Type Theory in Type Theory using Quotient Inductive Types *

Thorsten Altenkirch

School for Computer Science, University of Nottingham, United Kingdom
{txa,auk}@cs.nott.ac.uk

Abstract

We present an internal formalisation of a type heory with dependent
types in Type Theory using a special case of higher inductive types
from Homotopy Type Theory which we call quotient inductive
types (QITs). Our formalisation of type theory avoids referring
to preterms or a typability relation but defines directly well typed
objects by an inductive definition. We use the elimination principle
to define the set-theoretic and logical predicate interpretation. The
work has been formalized using the Agda system extended with
QITs using postulates.

Categories and Subject Descriptors D.3.1 [Formal Definitions
and Theory]; F.4.1 [Mathematical Logic]: Lambda calculus and
related systems

Keywords Higher Inductive Types, Homotopy Type Theory, Log-
ical Relations, Metaprogramming, Agda

1. Introduction

We would like to reflect the syntax and typing rules of Type The-
ory in itself. This offers exciting opportunities for typed metapro-
gramming to support interactive theorem proving. We can also im-
plement extensions of Type Theory by providing a sound interpre-
tation giving rise to a form of template Type Theory. This paper
describes a novel approach to achieve this ambition.

Within Type Theory it is straightforward to represent the simply
typed A-calculus as an inductive type where contexts and types are
defined as inductive types and terms are given as an inductively
defined family indexed by contexts and types (see figure 1 for a
definition in idealized Agda).

Here we inductively define Types (Ty) and contexts (Con)
which in a de Bruijn setting are just sequences of types. We define
the families of variables and terms where variables are fyped de
Bruijn indices and terms are inductively generated from variables
using application (_ @) and abstraction (A). '

In this approach we never define preterms and a typing rela-
tion but directly present the typed syntax. This has technical advan-

* Supported by EPSRC grant EP/M016951/1.

' We are oversimplifying things a bit here: we would really like to restrict
operations to those which preserve Sn-equality, i.e. work with a quotient of
Tm.

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

POPL’16, January 20-22, 2016, St. Petersburg, FL, USA
ACM. 978-1-4503-3549-2/16/01...
http://dx.doi.org/10.1145/2837614.2837638

18

Ambrus Kaposi

data Ty : Set where
L : Ty
= Ty = Ty = Ty
data Con : Set where
° : Con
. :Con = Ty — Con
data Var : Con — Ty — Set where
zero : Var(I',o0)o
suc :Var'o — Var (', 7)o
data Tm : Con — Ty — Set where
var :VarT'co - Tmlo
Q@ :TmT(o=r1)
— TmIToc - TmT 7
A :Tm (T ,o0)7 = TmTI (c=1)

Figure 1. Simply typed A-calculus

tages: in typed metaprogramming we only want to deal with typed
syntax and it avoids the need to prove subject reduction theorems
separately. But more importantly this approach reflects our type-
theoretic philosophy that typed objects are first and preterms are
designed at a 2nd step with the intention that they should contain
enough information so that we can reconstruct the typed objects.
Typechecking can be expressed in this view as constructing a par-
tial inverse to the forgetful function which maps typed into untyped
syntax (a sort of printing operation).

Naturally, we would like to do the same for the language we
are working in, that is we would like to perform typed metapro-
gramming for a dependently typed language. There are at least two
complications:

(1) types, terms and contexts have to be defined mutually but also
depend on each other,

(2) due to the conversion rule which allows us to coerce terms along
type-equality we have to define the equality mutually with the
syntactic typing rules:

I'-A =B 'Ht: A
't:B

(1) can be addressed by using inductive-inductive definitions [6]
(see section 2.1) — indeed doing Type Theory in Type Theory was
one of the main motivations behind introducing inductive-inductive
types. It seemed that this would also suffice to address (2), since
we can define the conversion relation mutually with the rest of the
syntax. However, it turns out that the overhead in form of type-
theoretic boilerplate is considerable. For example terms depend on
both contexts and types, we have to include special constructors
which formalize the idea that this is a setoid indexed over two

given setoids. Moreover each constructor comes with a congruence
rule. In the end the resulting definition becomes unfeasible, almost
impossible to write down explicitly but even harder to work with in
practice.

This is where Higher Inductive Types [31] come in, because
they allow us to define constructors for equalities at the same
time as we define elements. Hence we can present the conversion
relation just by stating the equality rules as equality constructors.
Since we are defining equalities we don’t have to formalize any
indexed setoid structure or explicitly state congruence rules. This
second step turns out to be essential to have a workable internal
definition of Type Theory.

Indeed, we only use a rather simple special case of higher in-
ductive types, namely we are only interested in first order equal-
ities and we are ignoring higher equalities. This is what we call
Quotient Inductive Types (QITs). From the perspective of Homo-
topy Type Theory QITs are HITs which are truncated to be sets.
The main aspect of HITs we are using is that they allow us to in-
troduce new equalities and constructors at the same time. This has
already been exploited in a different way in [31] for the definition
of the reals and the constructible hierarchy without having to use
the axiom of choice.

1.1 Overview of the Paper

We start by explaining in some detail the type theory we are using
as a metatheory and how we implement it using Agda in section 2.
In particular we are reviewing inductive-inductive types (section
2.1) and we motivate the importance of QITs as simple HITs
(section 2.2). Then, in section 3 we turn to our main goal and
define the syntax of a basic type theory with only II-types and an
uninterpreted universe with explicit substitutions. We explain how
a general recursor and eliminator can be derived. As a warm-up we
define formally the standard interpretation which interprets every
piece of syntax by the corresponding metatheoretic construction in
section 4. Our main real-world example (section 5) is to formally
give the logical predicate translation which has been introduced
by Bernardy [7] to explain parametricity for dependent types. The
constructions presented in this paper have been formalized in Agda,
this is available as supplementary material [3].

1.2 Related Work

Our goal is to give a faithful exposition of the typed syntax of
Type Theory in a first order setting in the sense that our syntax is
finitary. Hence what we are doing is different from e.g. [10] which
defines a higher order syntax for reflection. We also diverge from
[24] which exploits the metatheoretic equality to make reflection
feasible because we would like to have the freedom to interpret
equality in any way we would like. We also note the work [14]
which provides a very good motivation for our work but treats
definitional equality in a non-standard way. Indeed, we want to
express the syntax of Type Theory in a natural way without any
special assumptions.

The work by Chapman [12] and also the earlier work by
Danielsson [13] have a motivation very similar to ours. [13] uses
implicit substitutions and this seems rather difficult to use in gen-
eral, his definitions have rather adhoc character. [12] is more prin-
cipled but relies on setoids and has to add a lot of boilerplate code
to characterize families of setoids over a setoid explicitly. This
boilerplate makes the definition in the end unusable in practice.

A nice application of type-theoretic metaprogramming is de-
veloped in [20] where the authors present a mechanism to safely
extend Coq with new principles. This relies on presenting a
proof-irrelevant presheaf model and then proving constants in the
presheaf interpretation. Our approach is in some sense complemen-
tary in that we provide a safe translation from well typed syntax

19

into a model, but also more general because we are not limited to
any particular class of models.

Our definition of the internal syntax of Type Theory is very
much inspired by categories with families (CwFs) [16, 19]. Indeed,
one can summarize our work by saying that we construct an initial
CwF using QITs. That something like this should be possible in
principle was clear since a while, however, the progress reported
here is that we have actually done it.

The style of the presentation can also be described as a gener-
alized algebraic theory [11] which has been recently used by Co-
quand to give very concise presentations of Type Theory [8]. Our
work shows that it should be possible to internalize this style of
presentation in type theory itself.

Higher Inductive Types are described in chapter 6 in [31], and
it is shown that they generalize quotient types, e.g. see [18, 25].

2. The Type Theory We Live In

We are working in a Martin-Lof Type Theory using Agda as a ve-
hicle. That is our syntax is the one used by the functional program-
ming language and interactive proof assistant Agda [2, 27]. In the
paper, to improve readability we omit implicitly quantified vari-
ables whose types can be inferred from the context (in this respect
we follow rather Idris [9]).

In Agda, II-types are written as (x:A) — B forIl(z : A).B,
implicit arguments are indicated by curly brackets {x:A} — B,
these can be omitted if Agda can infer them from the types of later
arguments. Agda supports mixfix notation, eg. function space can
be denoted _=-_ where the underscores show the placement of ar-
guments. Underscores can also be used when defining a function if
we are not interested in the value of the argument eg. the constant
function can be defined as const x _ = x. The keyword data
is used to define inductively generated families and the keyword
record is for defining dependent record types (iterated X.-types) by
listing their fields after the keyword field. Records are automati-
cally modules (separate name spaces) in Agda, this is why they can
be opened using the open keyword. In this case the field names be-
come projection functions. Just as inductive types can have parame-
ters, records and modules can also be parameterised (by a telescope
of types), we use this feature of Agda to structure our code. Agda
allows overloading of constructor names, we use this e.g. when us-
ing the same constructor _, for context extension and substitu-
tion extension. Equality (or the identity type) is denoted by =
and has the constructor refl. We use the syntax a =[p]= b to ex-
press that two objects in different types a:A and b:B are equal via
an equality of their types p : A = B, see also section 3.

To support this flexible syntax Agda diverges from most pro-
gramming languages in that space matters. E.g. [I'] is just a vari-
able name but [I" || is the application of the operation [[toT".

We use QITs which are not available in Agda, however we can
simulate them by a technique pioneered by [22] for HITs. While
QITs are a special case of HITs and are inspired by Homotopy
Type Theory (HoTT), for most of the paper we shall work with
a type theory with a strict equality, i.e. we assume that all equality
proofs are equal. We will get back to this issue and explain how our
work relates to Homotopy Type Theory in section 6.

However, we do assume functional extensionality which follows
in any case from the presence of QITs. The theory poses a canon-
icity problem, i.e. can all closed term of type N be reduced to nu-
merals, which can be adressed using techniques developed in the
context of Observational Type Theory [5]. Recent work [8] sug-
gest that also the harder problem of canonicity in the presence of
univalence can be addressed.

2.1 Inductive-Inductive Types

One central construction in Type Theory are inductive types, where
types are specified using constructors - see the definition of types
and contexts in figure 1. In practical dependently typed program-
ming we use pattern matching - however it is good to know that
this can be replaced by adding just one elimination constant to each
inductive type we are defining [23]. Here we differentiate between
the recursor which enables us to define non-dependent functions
and the eliminator which allows the definition of dependent func-
tions. The latter corresponds logically to an induction principle for
the given type. Note that the recursor is just a special case of the
eliminator. As an example consider the recursor and the eliminator
for the inductive type Ty defined in figure 1:

RecTy : (TyM : Set)
(" - Ty
=M - WM - M)
- Ty - TyM
RecTy TyM M =M, =M
=B)

RecTy TyM M =M (A
==M (RecTy YV M =M A)
(RecTy YM M =M B)

ElimTy (TyM : Ty — Set)
(LM : TyM L)
=M 0 (A Ty (AM M A)
{B: Ty} (B : W B)

— Ty (A=B))
- (A:Ty) - TYMA
ElimTy yM M =M, = M
ElimTy TyM M =M (A = B)
= =M (ElimTy YM M =M A)
(ElimTy TYM M =M B)
The type/dependent type we use in the recursor/eliminator (Ty™)
we call the motive and the functions corresponding to the construc-
tors (:M,=M) are the methods. The motive and the methods of the
recursor are the algebras of the corresponding signature functor.
The motive Ty™ is a family indexed over Ty and the methods are
fibers of the family over the constructors.

We can also define dependent families of types inductively -
examples are Var and Tm in figure 1. We may extend this to mutual
inductive types or mutual inductive dependent types — however
they can be reduced to a single inductive family by using an extra
parameter of type Bool which provides the information which type
is meant.

However, there are examples of mutual definitions which are
not covered by this explanation: that is if we define a type and a
family which depends on this type mutually. In this case we may
also refer to constructors which have been defined previously. A
canonical example for this is a fragment of the definition of the
syntax of dependent types where we only define types and contexts
(figure 2). Indeed we have to define types and contexts at the same
time but types are indexed by contexts to express that we want to
define the type of valid types in a given context. The constructor
_,__ appears in the type of the Il-constructor to express that the
codomain type lives in the context extended by the domain type.

The definition of such inductive-inductive types in Agda is stan-
dard. We first declare the types of all the types we want to define
inductively but without giving the constructors and then complete
the definition of the constructors when all the type signatures are in
scope.

As before, programming with inductive-inductive types can be
reduced to using the elimination constants - see figures 3 and 4 for

20

data Con : Set

data Ty : Con — Set
data Con where
° : Con

., (' : Con) - Ty’ — Con
data Ty where
U :V{T} - TyT
I :V{T}(A: TyI)(B: Ty (I',A)) - TyT

Figure 2. An example of an inductive-inductive type: contexts and
types in a dependent type theory

module RecConTy where

record Motives : Set; where
field
ConM : Set
TyM : Con™ — Set

record Methods (M :
open Motives M

Motives) : Set; where

field
oM : ConM
cM_ @M Con™) — WM TM — Con™
uM AT : Con™} — TYMTM
o {r™ : Con™} (AM . WM TM)
(BM . M (@M M AM)) - TyM M

module rec (M : Motives) (m : Methods M) where

open Motives M

open Methods m

RecCon : Con — ConM

RecTy : {I" : Con} (A : TyI) — TyM (RecConI")
RecCon = oM

RecCon (', A) = RecCon T ,CM RecTy A
RecTy U = yM

RecTy (ITAB) = I (RecTy A) (RecTy B)

Figure 3. Recursor for the inductive-inductive type of figure 2

those of the mutual inductive types Con and Ty defined in figure
2. To make working with complex elimination constants feasible
we organize their parameters into records: Motives, Methods. The
motives and methods for the recursor can be defined just by adding
M indices to the types of the types and constructors. Defining the
motives and methods for the eliminator is more subtle: we need to
define families over the types and fibers of those families over the
constructors taking into account the mutual dependencies — see
section 5.3 for a generic way of deriving these. The S-rules can
be added to the system by pattern matching on the constructors —
these rules are the same for the recursor and the eliminator.

The categorical semantics of inductive-inductive types has been
explored in [6, 26]. From a computational point of view inductive-
inductive types are unproblematic and pattern matching can be
reduced to using elimination constants which are derived from the
type signature and constructor types.

module ElimConTy where

record Motives : Set; where
field
Con™ Con — Set
T™wWM {I': Con} — ConMT — TyI — Set

record Methods (M : Motives) : Set; where
open Motives M

field
oM : ConMe
M {I' : Con} (T™ : Con™T)
{A: Ty} (AM : WM IMA)
— Con™ (', A)
uM {T' : Con}{T™ : Con™ T}
- TyM1rMu
m {I': Con} {I™ : Con™ T}
{A: TyT}(AM . WM M A)

{B: Ty (T, A)
(BM . TyM (™, c™ AM) B)
- TYWMTM (IIAB)
module elim (M : Motives) (m : Methods M) where

open Motives M
open Methods m

ElimCon : (T' : Con) — Con™MT
ElimTy : {I': Con} (A : TyI)
— TyM (ElimCon T) A
ElimCon e = oM
ElimCon (I', A) = ElimConT',C™ ElimTy A
ElimTy U = uM
ElimTy (IIAB) = IIM (ElimTy A) (ElimTy B)

Figure 4. Eliminator for the inductive-inductive type of figure 2

2.2 Quotient Inductive Types (QITs)

One of the main applications of Higher Inductive Types in Homo-
topy Type Theory is to represent types with non-trivial equalities
corresponding to the path spaces of topological spaces. Here we
are working in a Type Theory with a strict equality, i.e. all higher
path spaces are trivial. However, there are still interesting applica-
tions for these degenerate HITs which we call Quotient Inductive
Types (QITs). E.g. in [31] QITs (even though not by that name)
are used to define the constructible hierarchy of sets in an encoding
of set theory within HOTT and later to define the Cauchy Reals.
What is striking is that in both cases ordinary quotient types would
not have been sufficient but would have required some form of the
axiom of choice.

Agda does not allow the definition of equality constructors for
inductive types, however following [22] we can simulate them
by postulating the equality constructors and defining the recur-
sor/eliminator by pattern matching (see eg. figures 5 and 6). This is
the only place where we are allowed to pattern match on an element
of a QIT: later we should only use the eliminator/recursor. This
can be enforced by hiding techniques or turning off pattern match-
ing. Using this technique we retain the computational behaviour of
lower constructors while enforcing respect for the higher construc-
tors. The computation rules for the equality constructors always
hold (propositionally) because we work in a theory with UIP. We
conjecture that the logical consistency of Agda extended by QITs

21

data / (A : Set)(R: A — A — Set) : Set where
[1:A—=>A/R
postulate
L= V{A}{R: A - A — Set} {ab : A}
— Rab —» [a] = [b]
module Elim_/
(A:Set)(R: A — A — Set)
QY : A/ R — Set)
[(@A) = Q"[a))
[J=™ : {ab:A}(r: Rab)
= [a]"=[ap Q" [r]=]=[b]")

(
(
(
where

Elim: (x: A/ R) - Q"x
Elim[x] = [x]"

Figure 5. The constructors and elimination principle for quotient
types in HoT T-style. Note that the [_] = equality constructor needs
to be postulated and pattern matching on elements of A / R is
disallowed except when defining Elim (this is not checked by Agda,
we need to ensure this by hand): the only way to define a function
from A / R should be using the eliminator.

can be justified by the setoid model. For the more general case of
HITs, some examples have been studied in the context of cubical
type theory [8].

While this is not the use of quotient inductive types which is
directly relevant for our representation of dependently typed calculi
it is worthwhile to explain this in some detail to make clear what
QITs are about.

Our goal is to define infinitely branching trees where the actual
order of subtrees doesn’t matter. We start by defining the type of
infinite trees:

data Ty : Set where
leaf : Ty
node : (N — To) — To

and now we specify an equivalence relation which allows us to use
an isomorphism to reorder a tree locally.

data " To — To — Set where
leaf leaf ~ leaf
node {fg: N = To} - (V{n} - fn~gn)
— node f ~ node g
perm (g: N = To)(f: N - N) — islsof
— node g ~ node (g o f)
Hereislso : (N — N) — Set specifies that the argument is an

isomorphism, i.e. there is an inverse function. Quotient types [18]
can be postulated as shown in figure 5. With the help of this, we
can construct the type:

T : Set
T=To/ ~_
Note that this doesn’t require to show that _~ is an equivalence

relation but the resulting type is equivalent to the quotient with the
equivalence closure of the given relation. The elements of T are

equivalence classes [t] : To / 7 andgivenp : t ~ t'
wehave [p]= : [t] = [t']. The elimination principle Elim
allows us to lift a function [_]™ which respects _~ _ (expressed by

[L]=M) to any element of the quotient.
We would expect that we should be able to lift node to equiva-
lence classes, i.e. we would like to define a function node’ : (N —

data T Set where
leaf : T
node : (N > T) > T
postulate
perm @ (g : N = T)(f: N - N) — islsof
— node g = node (gof)
module ElimT
(™ T — Set)
(leaf™ T leaf)
(nodeM {f: N = T} : (n:N) = T (fn))

— T (node f))
(perm™ : {g:N = T} (" : (n:
(f: N — N)(p : islsof)
node™ g" =[ap TV (perm g f p) |=
nodeM (g" o f))
where
Elim: (t:T) - Tt
Elim leaf = leaf
Elim (node f) = node™ (An — Elim (fn))

Figure 6. The constructors and eliminator for the quotient-
inductive type T

T) — T such that [node f] = node’ ([_] o f). However, it
seems not possible to do this. To see what the problem is it is in-
structive to solve the same exercise for finitely branching trees. It
turns out that we have to sequentially iterate the eliminator depend-
ing on the branching factor. However, clearly this approach doesn’t
work for infinite trees. And indeed, in general assuming that we
can lift function types of equivalence classes is equivalent to the
axiom of choice. And this is an intuitionistic taboo since it entails
the excluded middle [15].

However, if we use a QIT and specify the constructor for equal-
ity at the same time we avoid this issue altogether. Such a version of
T is defined in figure 6. The main difference here is that we specify
the new equality and the constructors at the same time. We also do
not need to assume that the relation is a congruence because this is
provable in general for the equality type. The dependent eliminator
is given in figure 6: we see that we also need to interpret the equa-
tion when we eliminate from T (pattern matching on T should be
avoided after defining the eliminator).

Pitts [29] observed that an alternative way to solve this problem
would be to mutually define ~ and Tg and thenuse T = To / 7
in the negative position of the constructors for T, i.e.

It seems plausible that QITs could be reduced to inductive-inductive
definitions and quotient types and the reasonable assumption that
quotient types preserves strict positivity.

node :

3. Representing the Syntax of Type Theory

We are now going to apply the tools introduced in the previous
section to formalize a simple dependent type theory, that is a type
theory with II-types and an uninterpreted family denoted by U :
Type and El : U — Type. Despite the naming this is not a
universe, but a base type in the same way as ¢ is a base type for the
simply typed A calculus. Without this the syntax would be trivial as
there would be no types or terms we could construct.

The signature of the QIT we are using to represent the syntax of
type theory is given in figure 7. We have already seen contexts Con

N) = TV (gn))

22

data Con : Set

data Ty : Con — Set

data Tms : Con — Con — Set
dataTm : VD — Ty — Set

Figure 7. Signature of the syntax

data Con where
° : Con
, : Con —» Ty — Con

data Ty where
[T :TyA - TmsTTA —» Ty’

II c(A:TyD)(B: Ty (I',A) —» TyTl
u Ty DD
El :(A:TmTU) - Ty

Figure 8. Constructors for contexts and types

data Tms where
€ : TmsTe
.t (0:TmsT"'A) - TmI (A[4]T)
— TmsT (A, A)
id : TmsIT
o : TmsAY — TmsI'A — TmsI'X
TmsT'(A,A) - TmsT A

1

Figure 9. Constructors for substitutions

and Types Ty in our previous example for an inductive-inductive
definition. We extend this by explicit substitutions (Tms) which
are indexed by two contexts and terms Tm which are indexed by a
context and a type in the given context.

The constructors for contexts are exactly the same as in the pre-
vious example but we are introducing some new constructors for
types (figure 8). Most notably we introduce a substitution operator
[]T which applies a substitution from I to A to a type in con-
text A producing a type in context I'. The contravariant character
of substitution arises from the desire to semantically interpret sub-
stitutions as functions going in the same direction, as we will see in
detail in section 4. Syntactically it is good to think of an element of
Tms I'" A as a sequence of terms in context I which inhabit all the
types in A. This intuition is reflected in the syntax for substitutions
(figure 9): € is the empty sequence of terms, and _, extends a
given sequence by an additional term. It is worthwhile to note that
while the type which is added lives in the previous target context
A, the term has free variables in I" which makes it necessary to ap-
ply the substitution operator on types: A [§] T. We also introduce
inverses to _, , i.e. projections. The first one 71 produces a sub-
stitution by forgetting the last term. Since we have explicit substi-
tutions we also have explicit composition _o_ of substitutions and
consequently also the identity substitution which will be essential
when we reconstruct variables.

For terms (see figure 10) we also have a contravariant substitu-
tion operator []t whose type uses the substitution operator for
types. We also introduce the second projection w2 which projects
out the final term from a non-empty substitution. Finally, we in-
troduce app and lam which construct an isomorphism between
Tm (', A) Band Tm I" (IT A B).

data Tm where
[t: TmAA — (§:
— TmIDT (A[4]T)

TmsT A)

o (6 :TmsT'(A,A) - TmT (A[m 6]T)

app TmI(ITIAB) - Tm(T',A)B

lam Tm(F,A)B—)TmF(HAB)

Figure 10. Constructors for terms

[id]T :A[d]TEA

noar CA[S)T[o]T = A[doo]|T

U[] :U[6]T = U

Elf : EIA[6]T = El(coe (TmI'= U[]) (A[d]t))
Tt~ (0:TmsTA)(A: TyA)

— Tms (' ,A[4]T) (A, A)

01T A= (domid), coe (TmI'= [][]T) (72 id)

I1]] : (ITAB)[4]T = A[S]IT)(B[d T A]T)

Figure 11. Equations for types

Let’s explore how our categorically inspired syntax can be used
to derive more mundane syntactical components such as variables.
First we derive the weakening substitution:

wk : V{I'} {A: TyI'} - Tms(I",A)T
Wk = 7T1id

We need to derive typed de Bruijn variables as in the example for
the simply typed A-calculus. However, we have to be more precise
because the result types live in the extended context and hence we
need weakening. However, the definitions are straightforward:

z: Tm (T, A) (A[wk]T)

vz = 7o id

s: TmIA — Tm (T',B) (A[wk]T)
vsx = x [wk]t

Now we turn our attention to the constructors giving the equa-

tions. To define these we sometimes need to transport elements
along equalities. To simplify this we introduce a number of conve-
nient operations. coe turns an equality between types into a func-
tion:
A
Specifically in our current construction we often want to coerce
terms along an equality of syntactic types, to facilitate this we
introduce an operation which lifts an equality between syntactic
types to an equality of semantic types of terms:

Tml'= {Ao : TyT'} {A; : TyT'} (A2

— TmI'Ag = TmT Ay
A more general version of this function is ap (apply path in HoTT
terminology):

ap: (f: A — B){agar:

— fag = fa;

coe : B—+A—B

ap =

A} (a2

31)

We introduce no additional equations on contexts - however, the
equality of contexts is not syntactic since they contain types which
has non-trivial equalities.

Let us turn our attention to syntactic types Ty, see figure 11.
The first two equations explain how substitution interacts with
the identity substitution and composition. The remaining equations

23

idl :idod = ¢
idr :doid =4
ass : (cod)ov = oo (dov)
o :(0,t)oc = (§oo),coe(TmI'= [|[IT) (t[o]t)
mpB:m(d,t) =9
m :(md,md) =6
en :{o:Tmsle} — o = ¢
Figure 12. Equations for substitutions
[idlt : t[id]t=[Tml= [d]T =t
0t : t[o)[o]t E[TmFE [][]T]: t[doo]t
mf i w2 (6,a)=[Tml= (ap(_ [JTA)mB)]=a
I8 : app (lamt) = t
IIn : lam (appt) = t
lam[] : (lamt) [6t=[TmI'= I[]]=lam (t[J T At)

Figure 13. Equations for terms

explain how substitutions move inside the other type constructors.
When introducing the equation for IT we notice that we need to lift
a substitution along a type, that is given an element of Tms I" A we
want to derive Tms (I', A [§]T) (A, A). This is accomplished
by _ 1 _ which can be defined using existing constructors of
substitutions and terms, namely 6 T A (6 o wk , vz).
However this doesn’t typecheck since the second component of the
substitution should have type Tm (I' , A[6]T) (A [6 o wk]T)
but vz has type Tm (I' , A[6][T) (A[6]T [wk]T). However
using the equation just introduced which describes the interaction
between substitution and composition can be used to fix this issue.

The equations for substitutions (figure 12) state that substitu-
tions form a category and how composition commutes with
which relies again on [] []T. We also state that 7; works as expected
and that surjective pairing holds. There is only one substitution into
the empty context (en), this entails that € is a terminal object in the
category of substitutions.

The equations for terms (figure 13) start similarly to those for
types: first we explain how term substitution interacts with the
identity substitution and composition. Unsurprisingly, these laws
are upto the corresponding laws for types. We state the law for
the second projection whose typing relies on the equation for the
first projection. The equations I13 and IIn state that lam and app
are inverse to each other. lam[] explains how substitutions can
be moved into A-abstractions. This law refers to the substitution
law for II-types which can be viewed as an example of the Beck-
Chevalley condition [1]. Note that a corresponding law for app is
derivable:

app (coe (TmI'= II]] dt))

) (t]
=(ap(Az — app (coe (TmI'= II])) (z [d]t)))
(Tn 1))
(

n
app (coe (TmI'= II[]) ((lam (app t)) [¢]t))
= (apapp lam[])
app (lam (appt [T Alt))
=(1pB)
appt[d T At

We observe that our inductive definition defines an initial cate-
gories with families (CwF) [16]. The equations can be summarized
as follows: the contexts form a category with a terminal object and
we have the corresponding laws [id]T/t, [][] T/t for substitutions
of types and terms; we have substitution rules for type formers

U[], El[], II[]; the rest of the equations express two natural isomor-
phisms, one for the substitution extension _, and one for II: the
3 laws express that going down and up is the identity, the 77 laws ex-
press that going up and then down is the identity, while naturalities
give the relationship with substitutions (an isomorphism is natural
in both directions if it is natural in one direction).

p: TmsT" A TmT (A[p]T)
o T, w2
TmsT (A, A)
| Tm (I', A) B
™ T mAB PP

We show how a more conventional application operator can be
derived. First we introduce one term substitution:

< >:TmTA = TmsT (T, A)
<t> = id, coe (TmI'= ([id]T 1))t

Note that here we need to apply the equation for identity substitu-
tions backward exploiting symmetry for equations _’1. Given this
it is easy to state and derive ordinary application:

$: TmD(IAB) — (u: TmTA)
- TmDT(B[<u>]T)
t$u= (appt)[<u>]t

We prefer to use the categorical combinators in the definition of
the syntax since they are easier to work with, avoiding unnecessary
introduction of single term substitutions which correspond to using
id.

We define the recursor and the eliminator analogously to the
examples in section 2. The motives and methods have the same
names as the types and constructors with an added ™ index. We list
the motives and the methods for types for the eliminator in figure
14. Note the usage of lifted congruence rules such as Ty’ = and
TmI'™ = and how lifting the coerces is done. Also we define a
lifting of the _ 1 _ helper function.

An interpretation of the syntax can be given by providing ele-
ments of the records Motives and Methods. Soundness is ensured
by the methods for equality constructors. This way a model of Type
Theory can be viewed as an algebra of the syntax.

4. The Standard Model

As a first sanity check of our syntax we define the standard model
where every syntactic construct is interpreted by its semantic coun-
terpart — this is also sometimes called the metacircular interpre-
tation. That means we interpret contexts as types, types as depen-
dent types indexed over the interpretation of their context, terms as
dependent functions and substitutions as functions. We use the re-
cursor to define this interpretation, the motives are given in figure
15. We use an idealized record notation where fields can have pa-
rameters (in real Agda these need to be lambda expressions). The
parameters of the fields of the motives are the results of the recur-
sive calls of the recursor.

The definition of the methods is now straightforward (figure 16).
In particular the interpretation of substitution nicely explains the
contravariant character of the substitution rules. Note that [U] : Set
and [EI] : [U] — Set are module parameters.

We have omitted the interpretation of all the equational con-
stants because they are trivial: all of them are refl because the two
sides are actually convertible in the metatheory.

A consequence of the standard model is soundness, that is in
our case we can show that there is no closed term of U because we
can instantiate U with the empty type. It should also be clear that to
construct the standard model we need a stronger metatheory than

24

record Motives : Set; where
field
ConM Con — Set
Ty : ConMTI — TyI' — Set
TmsM : ConMI' - ContMA — TmsT A
— Set
Tm" TWMITMA - TmT A — Set

record Methods (M : Motives) : Set; where
open Motives M

field
I (M TmsM M AM §)
- TYMTM(A[46]T)
uM : {T™: ConMT} - WM TMU
EM (AM . TmMTM UM A) — TyM M (EI A)
o (AM . TyM M A)
BM . yM([Tv,cM AM) B)
— TYyM ™ (I A B)
[id] T AM [idM ™™ =[TyrM = [id]T |= AM
o™ AM LM T [M T
=[TyrV'= (IIT =
AM [6M OM O'M }TM
up™ UM [M) TM = TyIM= U[)]= UM
EipM EMAM [gM]T™
=[Ty[M= Elf |=
EM (coe (TmIM= UHM refl)
(AM [8™)eY))
M (M TmsM TM AM) (AM - TyM AM A)
— Tms™ (M, CM AM [M]T™)
(AM M AMY (5 1 A)
(6 T A)
M M AM — (M M M igM)
;M coe (TmIM™M= [|[[TV refl) (mo™ id™)
field
g™ . M AMBM [M TV = TyIM= 1)) =

HM (AM [6M }TM) (BM [5M TM AM]TM)

Figure 14. The motives and some methods for the eliminator for
the syntax

the object theory we are considering. In our case this is given by
the presence of an additional universe (here we have to eliminate
over Sety).

5. The Logical Predicate Interpretation

In this section, after briefly introducing parametricity for a simple
dependent type theory we describe our formalisation of this inter-
pretation using the syntax given in section 3. This is a real-world
example of the usefulness of our representation of the syntax; note
that not only the domain of our interpretation but also the codomain
is the syntax. This interpretation could be useful in connection with
metaprogramming: using a quoting mechanism, one could auto-

M : Motives
M = record
{Con™ = Set
Ty 1] = [I'] — Set
;Tms" [C] [A] = [T] — [A]
; Tm" [T [A] = (v: [ID — (Al)

}
[_]C : Con — Set
[JT :TyT — [T]JC — Set
[Is : TmsT" A — [T]C = [A]C
[t :(t:TmCA) = (y:[T]C) — [A]T~

Figure 15. Motives for the standard model and how we would
define the type of the interpretation functions using usual Agda
syntax

m : Methods M
m = record
{oM =T
;I01,CM[A] = T[] [A]
STAT [18T 1T v = [A] ([6] »)
;UM - =1[vl
s EM [t v = [EN ([t])
sTIM AT Bl v = (x : [Al4) — [B] (v,%)
;eM _ = tt
161, sM It~ = [0)~ . [tl v
;id" v =7
;18] ™ [o] ~ = [6] ([e])
;mM 6] v = proj, ([6] 7)
Tl LI 1EY v = [t] ([6])
s maM 6] v = proj, ([6] 7)
sappV (] v = [t (proig) (proi;)
;IamM[[t]] vy =Xa = [t (y.a)
= refl

; [id] T
}...

Figure 16. Methods for the standard model

matically derive parametricity properties of functions defined in
Agda.

5.1 Logical Relations for Dependent Types

Logical relations were introduced in computer science by Reynolds
[30] for expressing the idea of representation-independence in the
context of the polymorphic A-calculus. Reynold’s abstraction theo-
rem (also called parametricity) states that logically related interpre-
tations of a term are logically related in the relation generated by
the type of the term. This was later extended to dependent types by
[7]: Type Theory is expressive enough to express the parametric-
ity statement of its own terms — the logic in which the logical
relations are expressed can be the theory itself. Contexts are inter-
preted as syntactic contexts, types as types in the interpretation of
their context and terms as witnesses of the interpretation of their
types.

We describe the parametric interpretation for an explicit sub-
stitution calculus with named variables, universes a la Russel, Pi

25

types and one universe. The syntax of contexts, terms and types is
the following:

r = e | ', x: A

tuAB:= x| Set | (xA) - B | Ax — t | tu
| t]o]

0,0 = €| (o,x—1t)]| ocod | id

t [o] is the notation for a substituted term, weakening is implicit.
We omit the typing rules, they are standard and are given in the
formal development.

We define the unary logical predicate operation _" on the syntax
following [7]. This takes types to their corresponding logical pred-
icates, contexts (lists of types) to lists of related types and terms
to witnesses of relatedness in the predicate corresponding to their
types. We define _" by first giving its typing rules for contexts,
terms (which here include types) and substitutions:

I" valid 'Ht: A

IPvalid TPHt?: (APt
The second rule expresses parametricity, i.e. the internal funda-
mental theorem for logical relations. The rule for terms, when spe-

cialised to elements of the universe expresses that A * is a predicate
over A:

c: I — A
oP . TP — AP

I'EA : Set
I'PEAP D A - Set
The operation _" is defined by induction on the syntax as follows:

[] = e

(I‘,x:A)P =I" x:A,xM:APx

x " = xY

Set P = AA - (A — Set)

(x:A) = B)P =Af = ((x: A M:AFPx)
— BP (fx))

Ax = t)° = oM 5 tF

()

(tu)® =tPu(u®)

(t[o])" =t"[a”]

e” =€

(0, x—1)" = (0P xx,xM—1tP)

CER =oPosP

id " =id

5.2 Formal Development

Using Agda, we formalise the above interpretation for the theory
described in section 3. Note that here the type U will be interpreted
as a universe since we need to express predicates. We express
parametricity by a dependent function of the following type:

(t:TmTA = TmTP) AP [<t[prT]t>]T)

As t lives in context I', we need to substitute it by using a substi-
tution pr I' : Tms (I' P) I'. A P will not be a predicate func-
tion anymore but a type in an extended context, see below. Because
the above given type is a dependent type, contrary to the standard
model, we cannot use the recursor to define this interpretation, we
need the eliminator.

In contrast to the informal presentation of parametricity, here
we have an additional judgement for types and we use de Bruijn
indices instead of variable names which makes explicit weakening
necessary. The motives for the eliminator are defined in figure 17.
We need to specify the fields Con™, TyM, Tms™ and Tm"™ in the
record type Motives. We construct these components separately as
Con™, Ty™, Tms™ and Tm™. Con™ specifies what contexts will be
mapped to: they will not only be mapped to the doubled context

record Con™ (I" : Con) : Set where
field
=C : Con
Pr: Tms=CT
Ty™ : Con™T' — TyI' — Set
TYy"TMA = Ty (=CTM ,A[PrTV]T)
record Tms™ (T™ : Con™I') (AM : Con™ A)
(p: TmsT' A) : Set where
field
=s : Tms (=CTM) (=C AM)
PrNat : (PrAM)o=s = po (PrT™)
Tm™ : (MM : Con™T) — Ty"TMA — TmT A — Set
Tm™" T AMa = Tm (=CT") (AM [<a[PrTY]t >]T)
M : Motives

M = record {Con™ = Con™
;Y = Ty"
:Tms™ = Tms™
:TmM = Tm™}

Figure 17. Motives for the eliminator in the logical predicate in-
terpretation

=C, but also to a weakening substitution Pr from the doubled
context to the original one. We put these together into a record
where =C and Pr are the projections, so if '™ Con™ then
=CI'™ : Conand PrT™ : Tms (=CTM) T

The motive for types receives the result '™ of the eliminator
on the context and the type as A arguments. It will need to return
a type in the context =C I'™ extended with the type A (which
needs to be substituted by the projection). The predicate over A
is expressed by a type in a context extended with the domain of
the predicate. A substitution p will be mapped to the interpretation
=s which is between two doubled contexts and to a naturality
property PrNat which expresses that =s commutes with Pr. This
property is used eg. to define the method for []T, see below.
Terms will be mapped to terms in the doubled context and their
type is the predicate at the original term (which has to be weakened
by Pr): this is expressed by substituting the type by the term
using < > (defined in section 3). After defining the methods for
this interpretation, the eliminator ElimTm will give us a proof of
parametricity for this theory:

=C o ElimCon :
=s o ElimTms :

Con — Con
TmsT' A
Tms (=C (ElimCon I"))
(=C (ElimCon A))
(T : Con)
Tms (=C (ElimCon T")) T
(A:TyD)
Ty (=C (ElimConT)
, A[Pr(ElimConT)]T)
(t: TmTA)
Tm (=s (ElimCon I))
(ElimTy A
[<t[Pr(ElimConT)]t>]T)

Pr o ElimCon

ElimTy

ElimTm

We list the methods for contexts and types as fields of the record

Methods in figure 18. We omitted some implicit arguments and
used record syntax more liberally than Agda. The other methods

26

are straightforward but tedious to define due to the coercions that
need to be performed. For details see the supplementary material.

The empty context is mapped to the empty context and the
empty substitution. The context I' , A is mapped to the doubled
context =C I' for I extended by A and the interpretation AM. The
projection substitution for I' , A just projects out the A by lifting
Pr TM and is weakened so that it forgets about the additional AM
in the context.

For deriving the interpretation of a type A Ty A substi-
tuted by ¢ Tms I' A we need to give a type in the context
=CI™ , A[§]T [PrT™]T by the motive for types. The type
AM lives in the context =C AM | A [Pr AM |T and by the in-
terpretation of the substitution § and lifting over A [Pr AM]T by
— T —weget

=s™ + A[PrAM]T
: Tms (=CTY ,A[PrAM T [=s M]T)
(=CAM A[PrAM]T).

We can substitute AM by =s 6™ 1 A [Pr AM]T but still we
would get a type in the context

=CTY ,A[PrAM]|T [=sM]T

instead of
=CT™ , A[S]T[PrTM]T.

However by the naturality rule PrNat 6™ we know that
PrAo=ss™ = o Prr™.

With this in mind we can perform the following equality reasoning:

A[PrAMIT [=soM]T

oo)

(ap (_[_]T A) (PrNat 5M))

A[PrAMo=sM|T

A[SoPrTVM]T
(pgr)

A[S]T[PrTMT

Coercing =s 6™ 1 A [Pr AM |T along this equality (we denote
transitivity of equality by _ *_) we get a substitution of the right

type
Tms (=CT™ , A[PrAM T [=s 6™]T)
(=CAM A PrAMIT).

Similar coercions are taking place everywhere in the interpretation.
In the rest of the code-snippet we just write _ for the proofs of
equalities for the coercions. The interpretation of U is like that of
Set in the informal presentation: predicates over the type corre-
sponding to the code in the last element of the context which can
be projected by 72 id. The predicate returns a code of a type in U.
The interpretation of El goes the opposite way: it takes the predi-
cate AM from A into the universe and turns it into a predicate type
by first using app to depend on the last element of the context and
then applying El to get the type corresponding to the code. The
interpretation of II is the usual logical relation interpretation: we
are in the context =C T , II A B [Pr ™]T and we would
like to state that related arguments are mapped to related results by
the function given in the last element of the context. We quantify
over the argument type A (which needs to be weakened by Pr T™
because we are in an interpreted context, and by one step further
because of the last element in the context) and then over AM which
depends on A so the weakening here over IT A B [Pr T™] T needs
to be lifted by _ 1 _. The target of the function is BM which lives

m : Methods M
m = record
{o™ = record {=C = o;Pr =
. FM CM AM
= record { =C
; Pr
AM [oM T
= AM[coe(ap(Ao — Tms (=CT™, o))

¢ oar
- ap (_[_]T A) (PrNat ™)

00T)
(=sM 4+ A[PrAMT) T
;UM = TI (El (coe _ (2 id))) U
:EMAM = El (app (coe _ AM))
- TIM AM BM
=TI (A[PrTY|T [id]T)
(I (AM [7 id + A[PrTM]TT)
(BM[7id + A[PrTM]T ¢+ AV
, coe _ (app (coe _ (m2 id))
[mid]t)]T))

e}

(=CT™ , A[PrTM]T), AM
= (PrT™ 4 A)om id}}

}

Figure 18. Methods for specifying the logical predicate interpre-
tation for contexts and types

in the context (=C (T™ ,C™ AM) , B [Pr (T™ ,CM AM) |T), the
first part of which is provided by the substitution

mid T A[PrTM]T 4+ AM
: Tms (=CT" , TAB[PrTV]T
APEIM T (7 id | T
AM [mid + A[PrTMTT)
(=CTY,A[PrTV]T, AM)

which forgets the function from the context and is identity on
the rest of the context and the second part is given by applying
the function to the next element in the context and appropriately
weakening and coercing the result.

Defining the logical predicate interpretation is tedious but fea-
sible. Most of the work that needs to be done is coercing syntactic
expressions using equality reasoning which can be simplified by
using a heterogeneous equality [S] — two terms of different types
are equal if there is an equality between the types and an equality
between the terms up to this previous equality.

record ~ {AB : Set}(a: A)(b: B) : Set; where

constructor ,
field
projT : A =B
projt : a=[projT |=b

=~ can be proven to be reflexive, symmetric and transitive so
equality reasoning can be done in the usual way. But it has the
advantage that we can forget about coercions during reasoning:

{a:
Also, we can convert back and forth with the usual homogeneous
equality:

uncoe : A} (p: A="B) - a~coepa

from=: (p: A =B) - a=[p]=b — ax~b

27

to= :(p:axb)

We note that the axiom of function extensionality was not used
throughout the logical preciate interpretation.

— a=[projTp]=b

5.3 The Eliminator for Closed Inductive-Inductive Types

An application of the logical predicate interpretation is to derive the
syntax of the motives and methods for the eliminator of a closed
inductive-inductive type.

A general closed inductive-inductive type has the following
description in Agda notation:

data A; : T (signatures of types)

data A,

: Th
data A; where (constructors for A;)
C11 : A
Cim; A1m1

data A, where (constructors for A,)
: Anl

Cn1

2 Anm,

We have n types and the type Ai has m; constructors. Agda restricts
parameters of the constructors to only have strictly positive recur-
sive occurrences of the type. The same restriction applies here.

First we note that the above description can be collected into the
context where the variable names are the type names and construc-
tor names, and they have the corresponding types:

0,A12T1,...,An : Tn,C112A11,..
ZA,—.l,.. ZAnmn

To define the motives and methods for the eliminator, we need a
family over the types and fibers of that family over the constructors.
By applying the _" operation to this context, the context is extended
by new elements A;™ , ..., A, the types of which are the motives
and by new elements c M , oy Cnm, M the types of which will be
the methods, and they can be listed in a record:

Cnhm,

. Clmy ¢ A1m1 '

..oy Cn1 1 Cnm,

record Motives : Set where
field
A1M : T1 P A1

AM TP A,
record Methods (M : Motives) : Set where
open Motives M
field
ct™ AL Pen

M P
© Anm,

The method described here extends to types with equality con-
structors by using the logical predicate interpretation of the equal-
ity type. This is how we derived the motives and methods for the
eliminator of the syntax.

Cnmy, Cnmj,

6. Homotopy Type Theory

So far we have assumed uniqueness of identity proofs so let us have
a look at what happens if we give this up to be compatible with Ho-
motopy Type Theory as presented in [31]. If we take our definition
of the Syntax and consider it as a HIT, we get a strange theory.
Because we have not identified any of the equality constructors we
introduced this leads to a very non-standard type theory. Le. we

may consider two types which have the same syntactic structure
but which at some point use two different derivations to derive the
same equality but these cannot be shown to be equal.

However, this can be easily remedied by fruncating our syntax
to be a set, i.e. by introducing additional constructors:

setT : {AB : TyI'} {e0el : A =B} - e0 = el
sets : {60 : TmsT' A} {elel : § = o} — e0 = el
sett : {uv: TmI' A} {elel :u =v} — e0 = el

These force our syntax to be a set in the sense of HoTT, i.e. a type
for which UIP holds. We don’t need to do this for Con because
this can be shown to be a set from the assumption that Ty are sets.
It seems to be entirely sensible to assume that the syntax forms a
set, indeed we would want to show that equality is decidable which
implies that the type is a set by Hedberg’s theorem [17].

However, we now run into a different problem: we can only
eliminate into a type which is a set itself. That means that we cannot
even define the standard model because we have to eliminate into
Set, the type of all small types, which is not a set in the sense
of HoTT due to univalence, that is it has there may be more that
one equality proof between two sets. One way around this would
be to replace Set; by an inductive-recursive universe, which can
be shown to be a set but for which univalence fails (see the formal
development for the proofs).

data UU : Set
EL : UU — Set

data UU where
I : (A : UU) — (ELA — UU)
‘¢ (A:UU) - (ELA — UU)
“T¢: UU
EL (‘II AB)
EL (‘X* A B)
EL‘T = T

= (x : ELA) — EL (Bx)
= Y (ELA) Ax — EL (Bx)

An apparent way around the limitation that we can only elim-
inate into sets would be to only define the syntax in normal form
and use a normalisation theorem. Since the normal forms do not
require equality constructors there is no need to force the type to be
a set and hence we could eliminate into any type. Indeed, this was
proposed as a possible solution to the coherence problem in HoTT
(e.g. how to define semi-simplicial types). However, it seems likely
that this is not possible either. While we should be able to define the
syntax of normal forms without equations we will need to incorpo-
rate normalisation. An example would be the rule for application
for normal forms:

$: Nel (IIAB) — (u: NfT'A)
— NeI' B[<u>]T)

Here we assume that we mutually define normal Nf and neutral
terms Ne and that all the types are in normal form. However,
a problem is the substitution appearing in the result which has
to substitute a normal term into a normal type giving rise to a
normal type. This cannot be a constructor since then we would
have to add equalities to specify how substitution has to be behave.
Hence we have to execute the substitution and at the same time
normalize the result (this is known as hereditary substitution [28]).
We may still think that this may be challenging but possible using
an inductive-recursive definition. However, even in the simplest
case, i.e. in a type theory only with variables we have to prove
equational properties of the explicit substitution operation, which
in turn appear in the proof terms, leading to a coherence problem
which we have so far failed to solve.

Nicolai Kraus raised the question whether it may be possible
to give the interpretation of a strict model like the standard model

28

(section 4) with the truncation even though we do not eliminate into
a set. This is motivated by his work on general eliminations for the
truncation operator [21]. Following this idea it may be possible to
eliminate into set via an intermediate definition which states all the
necessary coherence equations.

While defining the internal type theory as a set in HOTT seems
to be of limited use, there are interesting applications in a 2-
level theory similar to HTS as proposed by Voevodsky [32]. While
the original proposal of HTS works in an extensional setting, it
makes sense to consider a 2-level theory in an intensional setting
like Agda. We start with a strict type theory with uniqueness of
identity proofs (UIP) but within this we introduce a HoTT universe.
This universe comes with its own propositional equality which
is univalent but isn’t proof-irrelevant. From this equality we can
only eliminate into types within the universe. We call the types
on the outside pretypes and the types in the universe rypes. The
construction of the type-theoretic syntax takes place on the level
of pretypes which is compatible with our assumption of UIP. On
the other hand we can eliminate into the HoTT universe which
is univalent. In this setting definitional equalities are modelled by
strict equality and propositional equality by the univalent equality
within the universe. Our definition of the syntax takes place at the
level of pretypes but when constructing specific interpretations we
eliminate into types.

7. Discussion and Further Work

We have for the first time presented a workable internal syntax of
dependent type theory which only features typed objects. We have
shown that the definition is feasible by constructing not only the
standard model but also the logical predicate interpretation. Further
interpretations are in preparation, e.g. the setoid interpretation and
the presheaf interpretation. The setoid interpretation is essential for
a formal justification of QITs and the presheaf interpretation is an
essential ingredient to extend normalisation by evaluation [4] to de-
pendent types. These constructions for dependent types require an
attention to detail which can only convincingly demonstrated by a
formal development. At the same time this approach would give us
a certified implementation of key algorithms such as normalisation.

Clearly, we have only considered a very rudimentary type the-
ory here, mainly for reasons of space. It is quite straightforward to
add other type constructors, e.g. 3-types, equality types, universes.
We also would like to reflect our very general syntax for inductive-
inductive types and QITs but this is a more serious challenge.

Having an internal syntax of type theory opens up the exciting
possibility of developing template type theory. We may define an
interpretation of type theory by defining an algebra for the syntax
and the interpretation of new constants in this algebra. We can
then interpret code using these new principles by interpreting it in
the given algebra. The new code can use all the conveniences of
the host system such as implicit arguments and definable syntactic
extensions. There are a number of exciting applications of this
approach: the use of presheaf models to justify guarded type theory
has already been mentioned [20]. Another example is to model
the local state monad (Haskell’s STM monad) in another presheaf
category to be able to program with and reason about local state
and other resources. In the extreme such a template type theory may
allow us to start with a fairly small core because everything else can
be programmed as templates. This may include the computational
explanation of Homotopy Type Theory by the cubical model — we
may not have to build in univalence into our type theory.

Acknowledgments

Thanks to Frederik Forsberg for discussions related to various
aspects of the paper and joint work on the normal form problem of

the pure version of internal type theory. We would also like to thank
Paolo Capriotti, Gabe Dijkstra and Nicolai Kraus for discussions
and work related to the topic of this paper, in particular questions
related to HITs and coherence problems. We are also grateful to the
anonymous reviewers for their helpful comments and suggestions.

References

[1] nlab: Beck-chevalley condition. Available online. Accessed: 2015-10-
26.
[2] The Agda Wiki, 2015. Available online.

[3] T. Altenkirch and A. Kaposi. Supplementary material for the paper
Type Theory in Type Theory using Quotient Inductive Types, 2015.
Available online at the second author’s website.

[4

=

T. Altenkirch, M. Hofmann, and T. Streicher. Categorical reconstruc-
tion of a reduction free normalization proof. In D. Pitt, D. E. Ry-
deheard, and P. Johnstone, editors, Category Theory and Computer
Science, LNCS 953, pages 182-199, 1995.

T. Altenkirch, C. McBride, and W. Swierstra. Observational equality,
now! In PLPV ’07: Proceedings of the 2007 workshop on Program-
ming languages meets program verification, pages 57-68, New York,
NY, USA, 2007. ACM. ISBN 978-1-59593-677-6. .

T. Altenkirch, P. Morris, F. N. Forsberg, and A. Setzer. A categorical
semantics for inductive-inductive definitions. In CALCO, pages 70—
84,2011.

[7] J.-P. Bernardy, P. Jansson, and R. Paterson. Proofs for free — para-
metricity for dependent types. Journal of Functional Programming,
22(02):107-152, 2012. .

[8] M. Bezem, T. Coquand, and S. Huber. A model of type theory in
cubical sets. In 19th International Conference on Types for Proofs
and Programs (TYPES 2013), volume 26, pages 107—128, 2014.

[9] E. Brady. Idris, a general-purpose dependently typed programming
language: Design and implementation. Journal of Functional Pro-
gramming, 23:552-593, 2013. ISSN 1469-7653. .

[10] M. Brown and J. Palsberg. Self-representation in Girard’s System U.
SIGPLAN Not., 50(1):471-484, Jan. 2015. ISSN 0362-1340. .

[11] J. Cartmell. Generalised algebraic theories and contextual categories.
Annals of Pure and Applied Logic, 32:209-243, 1986.

[12] J. Chapman. Type theory should eat itself. Electron. Notes Theor.
Comput. Sci., 228:21-36, Jan. 2009. ISSN 1571-0661. .

[13] N. Danielsson. A formalisation of a dependently typed language as an
inductive-recursive family. In T. Altenkirch and C. McBride, editors,
Types for Proofs and Programs, volume 4502 of Lecture Notes in
Computer Science, pages 93—109. Springer Berlin Heidelberg, 2007.
ISBN 978-3-540-74463-4.

[14] D. Devriese and F. Piessens. Typed syntactic meta-programming. In
Proceedings of the 2013 ACM SIGPLAN International Conference on
Functional Programming (ICFP 2013), pages 73-85. ACM, Septem-
ber 2013. ISBN 978-1-4503-2326-0. .

[5

=

[6

=

29

[15] R. Diaconescu. Axiom of choice and complementation. Proceedings
of the American Mathematical Society, 51(1):176-178, 1975.

[16] P. Dybjer. Internal type theory. In Types for Proofs and Programs,
pages 120—134. Springer, 1996.

[17] M. Hedberg. A coherence theorem for Martin-L6f’s type theory.
Journal of Functional Programming, 8(04):413-436, 1998.

[18] M. Hofmann. Extensional Concepts in Intensional Type Theory. The-
sis. University of Edinburgh, Department of Computer Science, 1995.

[19] M. Hofmann. Syntax and semantics of dependent types. In Exten-
sional Constructs in Intensional Type Theory, pages 13-54. Springer,
1997.

[20] G. Jaber, N. Tabareau, and M. Sozeau. Extending type theory with
forcing. In Logic in Computer Science (LICS), 2012 27th Annual IEEE
Symposium on, pages 395-404. IEEE, 2012.

[21] N. Kraus. Truncation Levels in Homotopy Type Theory. PhD thesis,
University of Nottingham, 2015.

[22] D. Licata. Running circles around (in) your proof assistant; or, quo-
tients that compute, 2011. Available online.

[23] C. McBride. Dependently Typed Functional Programs and their
Proofs. PhD thesis, University of Edinburgh, 1999.

[24] C. McBride. Outrageous but meaningful coincidences: dependent
type-safe syntax and evaluation. In B. C. d. S. Oliveira and M. Za-
lewski, editors, Proceedings of the ACM SIGPLAN Workshop on
Generic Programming, pages 1-12. ACM, 2010. ISBN 978-1-4503-
0251-7. .

[25] N. Mendler. Quotient types via coequalizers in Martin-Lof type theory.
In Proceedings of the Logical Frameworks Workshop, pages 349-361,
1990.

[26] F. Nordvall Forsberg. Inductive-inductive definitions.
Swansea University, 2013.

PhD thesis,

[27] U. Norell. Towards a practical programming language based on de-
pendent type theory. PhD thesis, Chalmers University of Technology,
2007.

[28] F. Pfenning. Church and curry: Combining intrinsic and extrinsic
typing. 2008.

[29] A. Pitts. Quotient types in Agda. Private email, May 2015.

[30] J. C. Reynolds. Types, abstraction and parametric polymorphism. In
R. E. A. Mason, editor, Information Processing 83, Proceedings of the
IFIP 9th World Computer Congress, pages 513-523. Elsevier Science
Publishers B. V. (North-Holland), Amsterdam, 1983.

[31] The Univalent Foundations Program. Homotopy type theory: Univa-
lent foundations of mathematics. Technical report, Institute for Ad-
vanced Study, 2013.

[32] V. Voevodsky. A type system with two kinds of identity types. Slides
of a talk at the Institute for Advanced Study, February 2013.

