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Abstract. Quotient inductive inductive types (QIITs) are generalisa-
tions of inductive types in type theory. QIITs may consist of multiple
sorts which can be indexed over each other. They also support equality
constructors. In this paper we present a type of codes for QIITs along
with interpretation functions which specify constructors, eliminators and
computation rules for the encoded types. This is analogous to containers
which act as codes for W-types. We present an internal syntax of a type
theory with a universe and restricted function types. A code for a QIIT
is a context in this type theory. The internal syntax is formalised as a
QIIT itself. We consider a metatheory with unique identity proofs, hence
we interpret codes as quotient instead of general higher inductive types.
Some of the contents of this paper were formalised in the proof assistant
Agda. Showing that the given QIITSs exist is left as future work.

1 Introduction

Many dependent type theories support some form of inductive types. An induc-
tive type is given by its constructors, along with an elimination principle which
expresses that all inhabitants are constructed using finitely many applications
of the constructors.

In this paper we present a specification for a large class of inductive types
which encompasses indexed families, inductive inductive types and set-truncated
higher inductive types, with possibly infinitary constructors. These types are
called quotient inductive inductive types (QIITs).

Our method is based on the idea that the constructors of an inductive type
can be specified as a context in a type theory. For example, natural numbers can
be represented by a context of three entries:

Nat : U, zero: Nat, suc: Nat — Nat.

We define a syntax for a small type theory where each context encodes a QIIT.
Additionally, this syntax is defined as a QIIT itself internally to a type-theoretic
metatheory. Constructors and eliminators for specified types are given by trans-
lations from the internal syntax to the metatheory. Justifying the existence of
the thus-specified inductive types is left to further work.

* This work was supported by USAF grant FA9550-16-1-0029, Hungarian State Grant
EFOP-3.6.3 and COST Action EUTypes CA15123.



We formalised the contents of this paper in the proof assistant Agda [24]. All
of our constructions have been formalised using a shallow embedding. A fully
precise formalisation using a deep embedding is underway. The formalisations
are available at the first author’s website.

Our contributions are:

— We give a general description of internal coding schemes for inductive types
in section [3

— We present a type theory where contexts specify QIITs, and provide several
examples of encoded types in section [

— We derive elimination principles and computations rules for encoded types
in sections BHS

— We extend the above construction with codes for infinitary constructors in
section

— We discuss how to extend our method to higher inductive inductive types in
section

The metatheory is described in section [2} and we discuss related work and
conclude in section [Tl

2 Metatheory and Notation

The metatheory is a type theory with a strict identity type (supporting unique-
ness of identity proofs, or equivalently Streicher’s axiom K [23]). To distinguish
notation from the object theory, we generally denote metatheoretic colon by
€. There is a hierarchy of cumulative Russel-style universes Set;, dependent
function space (o« € A) — B, X types denoted by (o € A) x B with left-
associative X, the one-element type T with constructor tt and the identity type
= with constructor refl and eliminator J. The notation is J4, p prueq for t € A,
Pe(acA) >t=a— Set,pr € Ptreflandeq € t = u. We writetrpeu € P/
for transport of w € P« along e € a = o/. A — B stands for (« € A) — B if B
does not mention a. We use (o € A)(8 € B) — C as a shorthand for iterated
function spaces. Definitional equality in the metatheory is denoted by =.

We use apfee€ fu= fu' for fe A— Bande e u=1u,and apdfe €
trpe(fu) = fu' when f € (e € A) — B. tr, ap and apd are defined using J in
the standard way. We also use short versions for tr and J: trewu with the first
parameter omitted, and Jpreq with all parameters except the fourth and last
omitted.

We require function extensionality, i. e. that the types (e € A) » fa =g«
and f = g are equivalent. The left-to-right direction is denoted funext.

The metatheory also supports at least one QIIT, the type of the syntax of
codes described in section [4l

3 Coding Schemes for Inductive Types

Inductive types can be specified using external syntactic schemes or internal
codes.



In the former case the type theory is extended with derivation rules specifying
inductive types. External schemes for inductive families are given in [10,/20], for
inductive recursive types in [11] and for a subset of higher inductive types in [5].

In the latter case there is an internal type of codes such that each code
represents a valid inductive type, and actual types are produced from codes by
decoding functions. Codes for simple inductive types such as natural numbers,
lists or binary trees can be given by containers which are decoded to W-types
[1). Indexed families can be specified as indexed containers 18], and there are
also codes for inductive recursive types [12]|, inductive inductive types [19] and
another subset of higher inductive types [22].

We notice that internal coding schemes can be split into the components
given in table After explaining these components through the example of
W-types [1], we present our coding scheme for QIITs by considering the same
components in sections respectively.

Type of codes Code € Set
Constructors ~¢ € Code — Set
Induction methods M € (I' € Code) — I'® — Set
Elimination principles ~& € (I" € Code)(y € I'“) — '™y — Set
Existence con € (I' € Code) — I'“
elim € (I € Code)(m € ™ (conI")) — I't (con ") m

Table 1. Components of internal coding schemes for inductive types.

Each element of Code specifies an inductive type. In the case of W-types, Code
is the type of containers: Code := (S € Set) x (S — Set). The two components
are usually called “shapes” and “positions”.

Given a code, the decoding function —¢ provides the types of the type and
value constructors, most conveniently as an iterated X' type or a record of com-
ponents. For W-types it is given as

(S,P)¢:= (W eSet) x (s€8S)—= (Ps— W)= W).

The first component (W) is the type constructor and the second component is
the value constructor (usually called sup).

The function —M provides the types of the motives and methods of the elim-
inator. It depends on a choice of constructors. It returns a motive for each type
constructor and a method for each value constructor. For the running example:

(S, PYM (W, sup) := (WM € W — Set)
x((seS)(fePs—W)—=((pePs) — WM (fp) —>WM(supsf))



—E provides the types of the elimination principles (one for each type constructor)
and the computation rules as identity types. In the case of W-types:

(S, P)E (W, sup) (WY, sup™) := (WP € (we W) = WM w)
X ((s eS)(fePs—>W)— wk (sups f) = supMsf()\p.WE (fp)))

The first component W¥ is the eliminator. Here it only has one input (the tar-
get) since the motives and methods are already given as arguments of —E. This
would make especial sense for inductive inductive types which may have multiple
eliminators which may share motives and methods. The second component re-
turned by —F is the computation rule. It explains the action of the eliminator on
the constructor sup: the result is given by the application of the corresponding
method sup™ and the recursive application of the eliminator.

There still remains the question whether the encoded types actually exist in a
given type theory. If con and elim are inhabited, then they do exist. For example,
in Agda or Coq the existence of W-types can be established with native inductive
definitions. Alternatively, one could use external rules to postulate the existence
of con and elim as a way of introducing new types.

4 Codes for QIITs

Codes for QIITs are contexts in the syntax of a small type theory which we call
the theory of codes.

The theory of codes is given as a QIIT itself following [3]. It is intrinsi-
cally typed, i. e. there are no precontexts, pretypes or preterms, and we only
consider well-formed constructions. The syntax has explicit substitutions. Con-
version rules are given by equality constructors. There is an elimination principle
which allows defining functions by induction on the syntax. Elimination ensures
that all functions from the syntax respect typing and conversion rules. We will
use this elimination principle to define the operations —¢, —M, —F in sections
[6] [7] respectively.

We believe that it is worth to use QIITs for internalising the theory of codes,
since this allows us to do precise machine-checked formalisation of the develop-
ment which would be prohibitively difficult otherwise.

For the current exposition, we eschew formal QIIT syntax in favor of a more
familiar type-theoretic notation with variable names, implicit substitutions and
implicit weakening. In particular, when we write horizontal lines for derivation
rules, we mean metatheoretic function types. We also omit the rules for substi-
tutions as they are standard.

The theory of codes has the following judgements.

I I'FA I'Ft: A

Note that in QIIT notation these are the type constructors of an inductive
inductive family, respectively:

Con € Set Ty € Con — Set Tm e (I" € Con) — Ty I' — Set



In our coding scheme, codes are contexts, hence Code := Con. Definitional equal-
ity in the theory of codes is denoted = (the metatheoretic identity type).

The derivation rules for the theory of codes are given in figure [I] We explain
the rules in order.

The rules for context formation and variables are standard. We assume fresh
names everywhere to avoid name capture. Note that weakening is implicit.

There is a universe U, with decoding written as an underline (usually El in the
literature). The purpose of U is to contain types which may serve as constructor
arguments while preserving strict positivity.

Inductive function types have domains which may refer to constructors of
the QIIT being defined, i. e. entries in the I' context. The domain types must
be in U, and since U is not closed under functions, function types cannot appear
in inductive arguments, which ensures strict positivity. However, this also forces
finitary constructors — infinitary constructors will be considered later in section
Ol When the codomain does not depend on the domain, @ — B can be written
instead of (z : a) — B.

Using this part of the syntax, we can already specify the code for natural
numbers. It is given by the following context.

-, nat : U, zero:nat, suc:nat — nat

We can also encode inductive inductive definitions such as the following fragment
of an intrinsic syntax of a type theory.

- Con:U, Ty:Con — U, e:Con, >:(I":Con)— TyI' — Con,
U:(I':Con)=»TyI', ¥:([:Con)(A:Ty(B:Ty(I'>A)) =Tyl

Using the full theory of codes, it is also possible to extend this to a code for the
full syntax described in [3].

Note that we include A in the syntax. This choice is not necessary for the
purpose of encoding QIITSs, since we are not aware of any example for which
A would be essential. Thus, A and the corresponding conversion rules could be
plausibly left out, but we include them anyway in order to make the theory of
codes more complete as a stand-alone type theory. Also, it is perhaps a useful
sanity check to define interpretations of A-s as well.

There is another function space which we call non-inductive. We distinguish
it from the inductive one by using € instead of colon in the domain specification.
Given any metatheoretic type T in Sety, we have non-inductive functions from
that type. Their purpose is to include types from the metatheory which are
external to the inductive type being defined. Note that in the type formation rule,
(¢ € T) = I' + B, is a function in the metatheory which computes a syntactic
type code for each « input. In this expression and in (¢ € T) — ' F t4 : B, as
well, I' does not depend on a.

Now we can specify length-indexed vectors as follows. We need natural num-
bers N with 0 and +1 in the metatheory, as well as an A € Sety for the elements.

-, vec: N — U, nil:vec0, cons: (ne€N)(aeA)— vecn — vec (n+1)



Contexts and variables:

I'-A I'-A I'Fxz: A I'+B
[ FIlxz:A INe:AFx: A I''y:BFa: A
Universe:
I'Fa:U
r'+u I'a

Inductive functions:

I'ta:U I''rz:aF B I'tt:(zx:a)— B I'Fu:a
I'-(x:a) = B I'tu: Bz ul

Ix:akt:B
I'kXxt:(x:a) > B

Ax.t)u = tlx — u] Az.(tx) =t

Non-inductive functions:

T € Setg (aeT)—TF B, I't:(aeT)— B, o eT
I'-(aeT)— B, I'ta' : By

(0€T)—=T'Fty: By
I'-Xdaty: (a€T)— By

Identity:

Aaty)a =ty Aa.(ta) =t

I'Fa:U I'Ft:a I'Fu:a I'tt:a
I'Fldgtu: U I'Frefl:ldgtt

I'Ft:a
Izx:a,z:ldtz =P
I'Fpr: Plz— t,z — refl]
I'Fu:a

I'keq:ld,tu

' ot (nzpyprueq: Pz = u,z — eq]

Jat (w.z.pyprirefl = pr

Fig. 1. The theory of codes.



For another example, propositional equality for an A € Setg is encoded as follows.
w Eq:(zeA)(ye A) = U, refl: (x € A) —» Eqazx

Smallness of non-inductive argument types is assumed for simplicity. It is
possible to generalize codes to arbitrary universe levels, but it is not essential to
the current development. Currently, type constructors parametrized by metathe-
oretic types are not possible since their type is not small: for example, the type
of vec cannot be (A € Set) — N — U. This is not a significant limitation, since as
shown in the vec example, it is always possible to construct codes in the metathe-
ory with parameters instantiated as needed. Having codes on any universe level
would be mainly interesting for the fact that it would allow self-describing or
“levitated” [8] codes as well, when combined with codes for infinitary construc-
tors. This is because the QIIT of codes is large (since it refers to metatheoretic
types) and infinitary as well (since it refers to metatheoretic functions which
return derivations in the theory of codes).

Note that non-inductive functions preserve strict positivity, since there is no
way to recursively refer to the code of the inductive type being defined in the
metatheory. The situation is analogous to the case of W-types, where codes con-
tain metatheoretic types and type families for shapes and positions respectively,
but neither can recursively refer to the code itself.

Furthermore, U is closed under identity (or equality), with large elimina-
tion J, allowing codes for higher constructors and recursive identity types in
constructors. We list the codes for several higher inductive types. The circle:

., st :U, base:s', loop: |dg basebase
Propositional truncation for a metatheoretic A € Setg:
tr:U, emb:(acA) —=tr, eq: (xy:tr) = Idyay
Set truncation likewise:
wotr:U, emb:(a€A)—tr, eq: (zy:tr)(pg:ldyzy) = Idig,. oy Pg

The J rule allows constructors to mention operations on paths as well. For
instance, the definition of the torus depends on path composition, which can
be defined using J. Using « for composition, the code for the torus is given as
follows [21}, p. 193]:

o P, bt pildpebb, q:ldebb, tildi, e (peq) (¢-p)

In summary, a code for an inductive type is given by a context in the theory
of codes, and each entry specifies a constructor. In general, the return type in
a context entry is of three possible forms: it is either U, a for some neutral
a, or ld, tu. In sections we present the —¢, —M and —F operations, which
respectively compute constructors, induction methods and elimination principles



from codes. The following table summarizes what these operations compute in
the mentioned three cases:

return type ¢ M -E

U type constructor  motive eliminator

a point constructor method computation rule
Idatu path constructor method expressing computation rule

preservation of equality

Note that there is no syntactic distinction between the three kinds of constructors
above. Any number of them can be introduced in any order, and each constructor
can refer to any previous one. A distinguishing feature of our approach is the
utilisation of universes instead of structural rules to introduce new sorts and to
ensure strict positivity.

Also, note the higher equality constructors in the set truncation and torus
examples. In the current development, higher equalities become trivial when in-
terpreted in the metatheory, since the metatheory has uniqueness of identity
proofs. Nevertheless, for higher equalities our interpretation functions compute
constructors and eliminators which conform to prior literature on higher induc-
tive types. See section for possible ways to extend the current development
to proof-relevant higher equalities.

5 Constructors

The operation —¢, given a context in the theory of codes, returns the types of
constructors in the metatheory. For example, it interprets the code for natural
numbers as follows:

(wn:U,z:n, s:n—n)°=Tx(necSety) x (z€n) x(s€n—n)

~C is defined by mutual recursion on contexts, types and terms in the theory
of codes. It is specified as follows.

FT 't A I'bt:A
I€eSet; ASelC—Set; tCe(yelC) — Ay

The implementation corresponds to the interpretation into the standard model
(set model) where every object-theoretic construction is mapped to its metathe-
oretic counterpart. Contexts are interpreted as left-nested iterated X types, i.e.
C=Tand (I z: A)C := (y € I') x A®+. In the above example for natural
numbers, T X (n € Set) X (z € n) X (s € n — n) is meant to be a shorthand for
the left-nested X' type where previous components are referred to by projections
instead of variables. The full definition of —€ is available in the appendix
All definitional equalities in codes are preserved by —C.



6 Induction Methods

Given a code for an inductive type and the constructors specified by the code, the
operation —M returns the motives and methods for the eliminator. In our setting,
induction motives are just induction methods for type constructors, hence, we
shall only talk about induction methods from now on. —™ works on the code for
natural numbers as follows:

(-, nat : U, zero : nat, suc : nat — nat)™ (tt, n, 2, s)

M

ETX(RMEH—)SGQ)X(ZMEHMZ)X(S 6(a€n)—>nMa—>nM(sa))

~M'is a variant of the unary logical predicate translation of Bernardy et
al. [6]. We fix a level ¢ for the universe we would like to eliminate into. For
each context I', ' is a predicate over the standard interpretation I'C. For a
type I' = A, AM is a predicate over the standard interpretation A, which also
depends on the standard interpretation v € I'® and a witness of 1™ ~.

FI I'HA
FMEFC—>Seti+1 AME(’YGFC)—)FM’Y%AC’Y—)Seti+1

For a term t, t™ witnesses that the predicate corresponding to its type holds
for t¢. This is often called a fundamental theorem in the literature on logical

predicates.
I'Ht: A

tMe (yeI)(AYM e IMy) — AMy M (1€ )

We introduce the following shorthand: ¢y ~™ is abbreviated as t+? for some ¢
expression. The implementation of —M is given below.

My =T

(I, z: AM (v, a) =M eMqy) x AM42 o

M 2 := z'" component in v

uM~2T =T — Set;

(@™~? =ad"y

(z:a) = BMy2f  =(aecay)(a™ e a2 a)
= B (7,0) (", aM) (f o)

(tu)™~? = (M%) (u ) (uMA?)

(Az.t)M 42 = daad™.tM(y,a) (M, aM)

(@ €T) > BaM2 f = (@€ T) > (B (f )

(ta)M~? =t"y2a

(Aa.to)M~? = Ao (te)M A2

(Idg tu)M ~2 = Aetr(gm 2y e (tM42) = uM~?



(refl )M ~2 = refl v 2y
MA2 =3 (™ ~2) (eq 7)) (eg™ +?)

The predicate for a context is given by iterating —M for its constituent types.
For a variable, the corresponding witness is looked up from M.

The predicate for the universe, given an element of T € U¢~y (with USy =
Setg) returns the predicate space over T'. The predicate for a type a is given by
the predicate for a.

The predicate for inductive function types expresses preservation of predi-
cates (at the domain and codomain types). Witnesses of application and abstrac-
tion are given by recursive application of —M. The definitions for non-inductive
functions are similar, except there is no predicate for the metatheoretic domain
type, and thus no witnesses are required.

The predicate for the identity type Id,tu, for each e € (ld,tu)¢, i. e.
e € tCv =u’~, says t™ and uM are equal. As these have different types, we have
to transport over the original equality e. The witness for refl is reflexivity in the
metatheory. The witness for J is given by double application of the metatheoretic
J. The definition is sourced from [16]. Here, we use a shortened J notation; the
full definition can be found in appendix [C]

All definitional equalities are preserved by —M.

(Jat (z.z.P)PTU€q

7 Elimination Principles

The operation —F yields eliminators and computation rules. It works as follows
on the code for natural numbers:

(-,nat : U, zero : nat, suc : nat — nat)E (tt,n, 2, s) (tt,n™, 2M, sM)
=T x (n¥ € (aen) »nMa)x (zF enfz=2M)
x (s¥ € (@en) = nP (sa) =n" a(n” a))

Previously, the —¢ and —M operations both returned iterated X types of the same
length as the input context, yielding a constructor and an induction method re-
spectively for each entry. —F provides the type of the eliminator for each type
constructor and the computation rule ($-rule) for each path and point construc-
tor. The computation rules are given using the metatheoretic identity type =.
—E can be viewed as a generalised binary logical relation translation where the
type of the second parameter in the relation may depend on the first parameter.
Contexts are interpreted as dependent binary relations between constructors

and methods. The universe level i was previously chosen for the —M operation.

I
I'fe(yer® — My — Set;

Types are interpreted as dependent binary relations which additionally depend
on (v, Y™, v¥) interpretations of the context.
I'HA
ABc (yeI'Y(AM e M) (vF € TEyyM)(a € AC ) — AMyyM o — Set;




For a term ¢, tF witnesses that the relation corresponding to its type holds for
t¢ and M.

I'Ht: A
tF e (y e IY(M e IMy)(vF € IEyy™M) = ABy M F (1) (tMy M)

In addition to 72, we use t7> to abbreviate t y4™ v¥. The implementation is
the following.

EyyM =T

([, z: AE (v,0) (M, a™) := (vF € IT'Ey?) x AB43 ™

zE 73 = z'® component in ny

U3 T TM =(aeT) =TV«

(a)Fy3 aaM =afFy a=aM

(@:a) = BYES 1Y = (o €ay) — BE (1.0) ("% )
(", refl) (f @) (F a (aFr° )

(tu)®~? =0 (597 (1)) (WF )

(Az.t)Eq3 = datE (7, 0) (VM aF 43 @) (A F, refl)

(@ €T) = Ba)"7* f M i=(aeT)— (Ba)™7 (fa) (fM )

(ta)E =550

(Aav.ty)E~? = \a.(to)E?

(Idg tu)E~3 = detr (tE47) (tr (uF~*)(apd (a® +?) e))

(refl,)E ~3 = Jrefl (tF ~?)

(Jat(w.z.P) prueq)E’YB =

J (J (J (JAPMPEprMprE — prP) (15 47)
(uncurry PM ) (uncurry PE4®%) (pr™ +2) (prf+?)) eq© v) uf v?’) (eg®~*)

The UE and (a)F definitions are the key points of the —E operation. The
former computes the types of eliminators for type constructors, while the latter
computes the types of g-rules for point and path constructors. The definitions
for the other —F cases are largely determined by these.

The UF rule yields the expected types of eliminators for non-indexed type
constructors. The types of eliminators for indezed type constructors follow from
the ((z : a) — B)E and ((a € T) — B,)F cases: if a function type eventually
returns in U, then the UE rule will apply at the end, yielding the appropriately
indexed type for the eliminator.

For point and path constructors, we get the type of computation rules from
(a)F, which expresses that applying the eliminator a® on a equals the corre-



sponding o™ method. Again, the operations for function types provide the com-
putation rules for point and path constructors with multiple arguments.

In the definition of ((z : a) — B)E, the resulting function type only takes a
single (o € a“I') as input, and it does not abstract over —M witnesses, unlike
as we have seen for ((z : a) — B)M. This is because we can freely generate
witnesses using the aF eliminator. The reason we have af as an eliminator is
because the domains of inductive functions are restricted to U. If we had a
general A type instead of an a : U code, AF would only yield a relation instead.
In our definition, we use aF to provide a witness for a™ya in (v, aF 2 ). We
also need to extend 7F with a witness for a B-rule expressing that using the
af eliminator on a equals the induction method for o. However, we have just
specified the induction method as af v3 o, so the witness for the S-rule can be
given as refl.

In (tu)E, the definition requires a J usage. Clearly, we need to apply tF to
some (« € a® ), so we may attempt to give tE~3 (uc ~v) as definition. However,
it follows from ((x : a) — B)E that this has type

BE (y,uC ) (M, a5 47 (u€ 7)) (77, vefl) (< (u€ ) (™72 (u€ ) (0% (u 7)),
but the required type is
BE (7, uS ) (M uMy?) (07 uf 4%) (1 (u€ ) (M9 (€ ) (1M 2).

We also know that uF~3 € aF~2 (u¢v) = uM~2. Hence we need to use path
induction on uF~3 to get the desired type; see appendix |§| for the full defini-
tion. From another perspective, J is needed in the definition because uF yields
a witness for a S-rule, i. e. an equality proof, and the only way to make use of
it is through J. Likewise, & yields a function, and the only way to use it in the
definition is to apply it.

(Id, tu)E~3 needs to provide a witness for (Id,tu)M~2e for each e with
type v = u®~. Unfolding the goal type, we get tre (tM~2) = uM~2. We use
apd (aF¥3) e to get aM 42 witnesses on both sides of the equation, then we trans-
port twice with -equalities given by uF~3 and tF~3 to rewrite the equation
sides to the needed form.

For (refl;)E, we need to witness the corresponding 3-rule which requires that
(Id, t£)E 43 refl equals refl™ 2. The right hand side is just refl, while the left hand
side expands to a doubly transported refl, with both transports going over t&~3.
Hence a single J over tE+2 lets us to prove the equality with refl.

We write the definition for (JTtpprueq)E here with the short J notation.
Also, we write uncurry PM for Ayy™M xzM 2 M PM (v, 2, 2) (Y™, 2™, 2M) and
analogously for uncurry PE. The full definition is rather complex and difficult
to handle outside of a proof assistant; it is available in the shallow Agda for-
malisation. In short, in order to provide the definition, we need to use J on all
available equality proofs, namely eqf~3, uF~3, eq®~ and tE~3, in this order.
In the innermost J expression, we additionally need to generalise over PM | PF
prM and prf in order to rewrite their types along tE~3.

Again, definitional equalities are preserved by —F, although in this case
preservation proofs depend on SB-equalities given by —F as well.



8 Existence of QIITs

Rephrasing the requirements for existence in table[I} we say that the metatheory
supports QIITSs if the following rules are admissible.

I EI m € I'™conp
conp € I'C elimpm € I'fconpm

9 Infinitary Constructors

In this section we add codes for infinitary constructors, i. e. constructors which
have function arguments with strictly positive recursive occurrences of type con-
structors. This can be accomplished by adding small non-inductive functions.

T € Sety (€T)—=Ttby:U 'tt:(aeT)—b, o €T
I'-(aeT)—b,:U I'Fta' by

(eT) =Tty by
I'Flaty: (@€T) — by

Aaty)a' =ty Aa.(ta) =t

Small non-inductive functions differ from non-inductive functions by return-
ing in some b, : U and by being in U themselves. These two features ensure strict
positivity while allowing functions with inductive return types in constructor ar-
guments. We overload the notation for abstraction and application since it can
be usually inferred from context whether a non-inductive function is small.

Now, assuming S € Setg and P € S — Sety, the code of the corresponding
W-type is as follows:

Wsp:=(, w:U, sup:(s€S)—=(peP)—w) —w)

Here, (p € P) — w is a small non-inductive function in U, hence it can be used
as domain type in the inductive ((p € P) — w) — w function.
The M and —E definitions are the following (-~ is given in appendix |Al).

(aGT)—>b My? =M (aeT) = (0" (fa)

(

(ta)M~y =ty

()\at) = A (t )M72
((aGT)—>b )E? = Af (b)) (f )
(ta)"y =ap(A\f.f @) (t59%)
(Aa.to)Ey = funext (Ao (to)E7?)

Only the —F definitions are notably different. Since (a € T) — by is in U,
(o € T) — b, )E yields an eliminator function and (t a)E yields a witness for a j3-
rule with type (ba)E 2 (tva) = tM 42 a. Since tE 3 € (. (bo)E7? (tC 7)) =



tM~2 we need to apply both sides of the equation to a with ap (Af.f a) to get
the desired type. In the notation of homotopy type theory, the definition could
be given as happly (tF+?) a.

For (Aa.ty)E, the type of the right hand side 1s (Aa. (b
(Aa. (to)M~?). For any «, (t,)E~> has type (ba)E 3 ((ta)©
get the right witness by applying funext.

m

)7‘3(( ) )):

7) = (ta)M~2, 50 we

For Wgp, this implementation yields the elimination principle previously
presented in section [3] We also present the example of indexed W-types (with
codes, ¢, M and -F) in appendix For a more complex infinitary example,
see the QIIT definition of Cauchy reals in [21} p. 383]. It can be directly translated

to a code; we omit reproducing the definitions here.

10 Towards Higher Inductive Inductive Types

The theory of codes is able to represent higher inductive inductive types (HIITs)
as shown by the examples of set truncation and the torus in section |4, However,
the metatheory has uniqueness of identity proofs (UIP), so the types returned
by —C are sets, i. e. all of their higher equalities are trivial. The question arises
whether it is possible to remove UIP from the metatheory and work in full
homotopy type theory [21].

If the metatheory lacks UIP, the QIIT defining the syntax needs to be set-
truncated, i. e. we would need constructors expressing that in the syntax, all
equalities of the same type are equal to each other. If we did not set-truncate,
types and terms which only differ in witnesses for conversion proofs would be
distinct.

However, with set-truncation, we can only eliminate from the syntax to types
which are sets themselves — which the metatheoretic universe is not. In |3
section 6], this problem is fixed with an inductive recursive universe which can
be proven to be a set. This solution does not work in our case, as we would like to
have higher inductive types in the metatheory. We hope that using intermediate
types which can be proven to be sets, we might be able to eliminate from the
syntax of type theory into a type which is not a set [14]. A candidate for such
an intermediate type could be a syntax of normal forms with decidable equality.

Another solution might be defining the operations —¢, -M, —F as syntactic
translations |7] instead of targeting the metatheory, as in this case the target
syntax would be a set again. In fact, the —M operation was first described as a
syntactic translation [6]. However, in this case we would have a problem defining
—E: it only preserves the /3 rules in the theory of codes up to internal propositional
equality, but not definitional equality. This is not a problem when targeting the
metatheory, because there is no way to talk about definitional equalities there.
This could be solved by leaving out the A\ and refl constructors from the theory of
codes together with the 8 rules. In this case we would need a different eliminator
for equality, possibly a generalisation of transport (tr). However, it is not clear
what would be the best way of representing non-inductive functions in this case.



A different way of solving the coherence issue would be using two-level type
theory [4] where the syntax of the theory of codes could be given in the strict
layer of the theory.

11 Related work and conclusions

Quotient types [13| are precursors of higher inductive types (HITs). The notion
of HIT first appeared in [21], however only through examples and without a
general definition. Sojakova [22] defines a subset of HITs called W-suspensions
by an internal coding scheme similar to W-types. She proves that the induction
principle is equivalent to homotopy initiality. Basold et al. [5] define an external
syntactic scheme for higher inductive types with only O-constructors and com-
pute the types of elimination principles. In [25] a semantics is given for the same
class of HITs but with no recursive equality constructors. Lumsdaine and Shul-
man give a general specification on when a model of type theory supports higher
inductive types [17]. They introduce the notion of cell monad with parameters
and characterise the class of models which have intial algebras for a cell monad
with parameters. Kraus [15] and van Doorn [9] construct propositional trunca-
tion as a sequential colimit. The schemes mentioned so far do not support higher
inductive inductive types.

Inductive inductive types were introduced in [19] together with an internal
coding scheme. The closest to our work is Altenkirch et al’s paper [2] which
gives a categorical specification of QIITs. In this work, the definitions of sorts
and constructors are given separately. Sorts are specified as a list of functors
into Set where the domain of the functor is a category constructed from results
of the previous functors, thus encoding dependencies of later sorts on previous
ones. The constructors are specified mutually with their category of algebras
and underlying carrier functor. The specification supports set-level equality con-
structors. From a specification of a QIIT they derive the type of the eliminator
and show that this corresponds to initiality.

Dependencies in higher inductive inductive definitions can be very complex.
We tackle this problem with a well-known method of describing intricate depen-
dencies: the syntax of type theory. We have to limit our type formers to only
allow strictly positive definitions, but these restrictions are the only things that
a type theorist has to learn to understand our codes. Our encoding is also di-
rect in the sense that the types of constructors and eliminators are exactly as
required and not merely up to isomorphisms. The price we pay is that we need
to handle an internal QIIT syntax of type theory. In the future, we would like
to close the loop by defining a type theory supporting QIITs in which the same
type theory can be internalised. Developing semantics for and proving existence
of our encoded types is also future work.

Acknowledgements. We would like to thank Baldzs Kémiives, Péter Dividnszky,
Paolo Capriotti, Thorsten Altenkirch, Nicolas Tabareau and Simon Boulier for
discussions and work related to this paper.
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Definition of —€

For the theory of codes:

.c =T

(I x: A =(yel%) x A%y
¢ .= ' component in
USny = Setg

(@) =ay

((z:a) = B)“~ =(a€a®y) = B (v,a)
(tu)<y = (t%9) (u“9)

(Az.t)C = At (v, )
(a€eT)—= B,)%y =(aeT)— (B,
(te)y = (ty) o

(Aa.ty)C = A (ta)Cy

(Idg tu)Cy =ty =uSny

reflcfy = refl

(Jat (z.2.P)PT U BQ)C Y= J(ac ¥) (t€ ) (A\z 2. PC (v,z,2)) (pTC 7) (uC 7) (eqC 7)

For small non-inductive functions as defined in section

(a€T) = b)) y:=(aeT) = (by)
(ta)Cy = (t9)a
(Aaw.to)€ = Aa.(te)Cy


http://www.mathematik.tu-darmstadt.de/~streicher/HabilStreicher.pdf
http://www.mathematik.tu-darmstadt.de/~streicher/HabilStreicher.pdf

B Indexed W-types

Suppose I € Sety, S € Setg, P € S — Setg, Out € S — I and In € (s € S) —
P s — I. Then, the code for the corresponding indexed W-type is the following:

W= w:(6el)—=U, sup:(s€S)—((peP)—=w(lnsp)) — w(Outs))

We pick a universe level j for elimination. The interpretations of W are the
following, omitting leading T components:

WC=(wel—Set) x((s€S)—((pePs)—w(Insp)) — w(Outs))
WM (w, sup) = (w™ € (i € I) — wi — Set;)
x((seS)(fepePs)—w({Insp))
S ((pe Ps)— w (Insp) (£ p)) = w™ (Outs) (sups 1))
WE (w, sup) (w™, sup™) =
(wP € (i € I)(x € wi) = wMix)
x((seS)fe(pePs)—w(nsp))
t

— w® (Out s) (sup s f) = sup™ s f (Ap.w” (Insp) (fp)))

The main difference to W-types is the extra indexing in w : (¢ € I) — U.
However, we only index with elements of a metatheoretic I, using a non-inductive
function for the type of w, hence only non-inductive ¢ « applications appear in
types, and J does not appear in the —F output.

C Definition of JM

The short definition was J (J (pr™ 72) (eq“ 7)) (eg™ +?). The inner J (pr™ ~2) (eq“ 7)
is expanded to:

J(a) ke
(A2 2.PM (7,2.,2) (WM tr w2, = (M 72) refl))
((aC 7y (1€ ) (A 2. PC (., 29y (PTEY) (W€ ) (eq© 7))
(pr™ ) (u ) (eg“ )
€ PM (v, uSy,eq“ ) (WM, triam 2y (eq“ ) (M ?), refl)
(J(a€ ) (1€ ) (it 2.P€ (4,,2)) () (u€ ) (eg© 7))



The outer J applied to the short inner J form is expanded as follows:

J(aM42) (tr w2, (eq€ ) (2 12))
Az 2. PM (77,uC v,eq¢ ) (M,z,2))
((a€ 4y (1€ ) (A 2. PC (v, 29y PTEY) (u€ ) (eg€ 7))
(I (™) (eq 7)) (@M~?) (eq™~?)
e PM (v, u¢v,eq%7) (M, uM~? eqM 4?)
(J(a€ ) (1€ ) O\t 2. € (4,,2)) () (€ ) (eg© 7))

D Definition of (tu)f

The expanded definition of (#u)E~? is

@2 (e ) (@€ 47 W )
(Az 2. BE (y,uC ) (YM,x) (vF,2) (tC v (u€¥)) (tM 42 (uC v) z))
(%72 (uC 7)) (MA?) (uF~?).

E Definition of (Id, t u)”

The goal is the dashed equality below. We can witness it by composing apd (af v3) e
and the two § equalities on the sides.

apd (aE+?)e

trom 2 e (aB 3 (1)) aE 43 (uC )
£E 3 uE~3
trgm 2 € (tM A2) s uM 42

The expanded definition for (Id, ¢ u)E~? is
Ae. tr()\w.tr(aM 42y ex=uM~y?) (tE 73)

(tr()\a:.tr(aM L2 (tM y2)=2) (’U,E ,73) (apd (aE ,73) 6))

F Definition of (refl;)E
The expanded definition of (refl;)E~? is

J(@M 32 (£ 7)) (@B 73 (1€ ) (A 2.trs (trs refl e 43 (1€ ) =refle)

(reflee 4 (t¢ ’y)) (tM '72) (tE 73)'
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