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What is the syntax of type theory?
Going abstract:

▶ forces choices:

▶ De Bruijn
▶ paranoid, not economic
▶ explicit substitution

▶ we can’t:

▶ count the number of brackets
▶ print the term

▶ normalise?

▶ we can:

▶ normalise
(gluing a.k.a. proof relevant
logical predicates)
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Computer formalisation
In practice, formalisation happens at the ABT level:
▶ Abel–Öhman–Vezzosi 2018, MetaRocq (2014–2025), Martin-Löf à la Coq

(Adjedj–Lennon-Bertrand–Maillard–Pédrot–Pujet 2024), Lean4Lean (Carneiro 2024)

Only very small CwF-style formalisations, and they are difficult to use. No formalisation
of gluing-style normalisation. Reasons:

1. the syntax needs quotients

2. Tm : Ty→ Set induces transport hell
Vec A : N→ Set

rev : Vec A n→ Vec A n
rev [] :≡ []
rev :≡

3. substitution laws are propositional, not definitional
(app t u) [𝜎] = app (t [𝜎]) (u[𝜎])
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▶ Abel–Öhman–Vezzosi 2018, MetaRocq (2014–2025), Martin-Löf à la Coq

(Adjedj–Lennon-Bertrand–Maillard–Pédrot–Pujet 2024), Lean4Lean (Carneiro 2024)

Only very small CwF-style formalisations, and they are difficult to use. No formalisation
of gluing-style normalisation. Reasons:

1. the syntax needs quotients

2. Tm : Ty→ Set induces transport hell
Vec A : N→ Set

rev : Vec A n→ Vec A n
rev [] :≡ []
rev (x :: xs)︸   ︷︷   ︸

:Vec A (1+n)

:≡ (comm+ n 1)∗ (rev xs ++ (x :: [])︸                ︷︷                ︸
:Vec A (n+1)

)

3. substitution laws are propositional, not definitional
(app t u) [𝜎] = app (t [𝜎]) (u[𝜎])

4/ 10



Computer formalisation
In practice, formalisation happens at the ABT level:
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Solution
▶ Model of type theory ↦−→ new isomorphic model with definitional substitution laws.

Examples: (Π A B) [𝜎] ≡ Π (A[𝜎]) (B[𝜎↑])
(app t u) [𝜎] ≡ app (t [𝜎]) (u[𝜎])
A[wk] [id, t] ≡ A
(lam v0) [id, t] ≡ t
t [𝜎 ◦ 𝛿] ≡ t [𝜎] [𝛿]
(𝜎, t) ◦ 𝛿 ≡ (𝜎 ◦ 𝛿, t [𝛿])

Non-example: id = (wk, v0)

▶ All CwF equations except the above are definitional (strict).

▶ Like making comm+ definitional.

▶ The new model can replace the old one, e.g. a substitution-strict syntax.

▶ We formalised gluing style canoncity for a small type theory, the Agda proof is as
beautiful as the paper one.
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Analogs of our strictification technique

▶ Difference lists in the Haskell Prelude:
replace [a] by [a] → [a]
xs represented by 𝜆ys. xs ++ ys

▶ Taking a category Ob,Hom and replacing Hom(J, I) by

y J •→ y I.

The Yoneda lemma implies Hom(J, I) � y J •→ y I.
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Inspiration for our strictification technique
▶ Presheaves as in HOAS, LF, 2lTT, SOGATs

▶ We need a strict CwFΠ of presheaves.

▶ Pédrot’s strict presheaves (LICS 2020)

F : Disc(C) → C Psh(C) Psh(Disc(C))

F∗

F∗

⊣

|StrictPSh(C)| :≡ (Γ : C → Set)
×
(
(I : C) → ((J : C) → C(J, I) → Γ J) → Prop

)
▶ Also called strictification (� → =, while our method is =→ ≡):

▶ right adjoint splitting (Hofmann 1994)
▶ left adjoint splitting, local universes (Lumsdaine–Warren 2015)
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The strictification technique
▶ A universe closed under Σ:

U : Set Σ : (A : U) → (El A→ U) → U
El : U→ Set – , – : (a : El A) × El B � El (Σ A B) : fst, snd

▶ Given a universe closed under certain type formers, we build a CwF closed under the
same type formers inheriting the substitution calculus from the metatheory:

Con := Set Tm Γ A := (𝛾 : Γ) → El (A 𝛾)
Sub ∆ Γ := ∆→ Γ A[𝜎] := A ◦ 𝜎
Ty Γ := Γ → U Σ A B := 𝜆𝛾. Σ (A 𝛾) (𝜆a.B (𝛾, a))
(Σ A B) [𝜏] = 𝜆𝛿. (A (𝜏 𝛿)) (𝜆a.B(𝜏 𝛿, a)) = Σ (A[𝜏]) (B[𝜏↑])

▶ This is a substitution-strict model (called contextualisation, standard/set/type-model).

▶ Internally to presheaves over a model supporting some type formers, we have a
universe closed under the same type formers.

▶ We take its contextualisation, then externalise (we need a strict CwFΠ of presheaves).
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Other ways to strictify

▶ Just work internally to an LF (Sterling PhD 2022, Bocquet–K.–Sattler FSCD 2023).

▶ Shallow embedding (K.–Kovács–Kraus MPC 2019).

▶ Via conservativity of equality reflection (Winterhalter et al. CPP 2019, Winterhalter ICFP
2024).

▶ Rewrite rules (Cockx TYPES 2019, Leray et al. ITP 2024).

▶ Local universe � → = strictification also provides some =→ ≡ (Lumsdaine–Warren
2015).

▶ Redefining substitution recursively (K. TYPES 2023).
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▶ Via conservativity of equality reflection (Winterhalter et al. CPP 2019, Winterhalter ICFP
2024).

▶ Rewrite rules (Cockx TYPES 2019, Leray et al. ITP 2024).

▶ Local universe � → = strictification also provides some =→ ≡ (Lumsdaine–Warren
2015).

▶ Redefining substitution recursively (K. TYPES 2023).

9/ 10



Other ways to strictify

▶ Just work internally to an LF (Sterling PhD 2022, Bocquet–K.–Sattler FSCD 2023).

▶ Shallow embedding (K.–Kovács–Kraus MPC 2019).
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Summary

▶ A technique for strictifying (=→ ≡) the substitution calculus of a model of TT.

▶ Intrinsic quotiented syntax is now even nicer than extrinsic syntax.
▶ The first computer formalisation of gluing-style canonicity for type theory.

▶ Problems:

▶ Agda and Coq hang when trying to compute with the strictified syntax.
▶ We lose some definitional computation rules for the eliminator of the syntax.

▶ Future work:

▶ Strictify the substitution calculus for a model of any SOGAT.
▶ Reusable library.
▶ Direct efficient proof assistant support.
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Weak CwF

Con : Set – [– ] : Tm Γ A→ (𝛾 : Sub ∆ Γ) →
Sub : Con→ Con→ Set Tm ∆ (A[𝛾])
Ty : Con→ Set [◦] : [◦]∗ (a[𝛾 ◦ 𝛿]) = a[𝛾] [𝛿]
Tm : (Γ : Con) → Ty Γ → Set [id] : [id]∗ (a[id]) = a
– ◦ – : Sub ∆ Γ → Sub Θ ∆→ Sub Θ Γ – ⊲ – : (Γ : Con) → Ty Γ → Con
ass : (𝛾 ◦ 𝛿) ◦ 𝜃 = 𝛾 ◦ (𝛿 ◦ 𝜃) – , – : (𝛾 : Sub ∆ Γ) → Tm ∆ (A[𝛾]) →
id : Sub Γ Γ Sub ∆ (Γ ⊲A)
idl : id ◦ 𝛾 = 𝛾 ,◦ : (𝛾, a) ◦ 𝛿 = (𝛾 ◦ 𝛿, [◦]∗ (a[𝛿]))
idr : 𝛾 ◦ id = 𝛾 p : Sub (Γ ⊲A) Γ
⋄ : Con q : Tm (Γ ⊲A) (A[p])
𝜖 : Sub Γ ⋄ ⊲𝛽1 : p ◦ (𝛾, a) = 𝛾

⋄𝜂 : (𝜎 : Sub Γ ⋄) → 𝜎 = 𝜖 ⊲𝛽2 : ( [◦] · ⊲𝛽1)∗ (q[𝛾, a]) = a
– [– ] : Ty Γ → Sub ∆ Γ → Ty ∆ ⊲𝜂 : id = (p, q)
[◦] : A[𝛾 ◦ 𝛿] = A[𝛾] [𝛿]
[id] : A[id] = A
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Strict CwF

Con : Set – [– ] : Tm Γ A→ (𝛾 : Sub ∆ Γ) →
Sub : Con→ Con→ Set Tm ∆ (A[𝛾])
Ty : Con→ Set [◦] : a[𝛾 ◦ 𝛿] ≡ a[𝛾] [𝛿]
Tm : (Γ : Con) → Ty Γ → Set [id] : a[id] ≡ a
– ◦ – : Sub ∆ Γ → Sub Θ ∆→ Sub Θ Γ – ⊲ – : (Γ : Con) → Ty Γ → Con
ass : (𝛾 ◦ 𝛿) ◦ 𝜃 ≡ 𝛾 ◦ (𝛿 ◦ 𝜃) – , – : (𝛾 : Sub ∆ Γ) → Tm ∆ (A[𝛾]) →
id : Sub Γ Γ Sub ∆ (Γ ⊲A)
idl : id ◦ 𝛾 ≡ 𝛾 ,◦ : (𝛾, a) ◦ 𝛿 ≡ (𝛾 ◦ 𝛿, a[𝛿])
idr : 𝛾 ◦ id ≡ 𝛾 p : Sub (Γ ⊲A) Γ
⋄ : Con q : Tm (Γ ⊲A) (A[p])
𝜖 : Sub Γ ⋄ ⊲𝛽1 : p ◦ (𝛾, a) ≡ 𝛾

⋄𝜂 : (𝜎 : Sub Γ ⋄) → 𝜎 ≡ 𝜖 ⊲𝛽2 : q[𝛾, a] ≡ a
– [– ] : Ty Γ → Sub ∆ Γ → Ty ∆ ⊲𝜂 : id = (p, q)
[◦] : A[𝛾 ◦ 𝛿] ≡ A[𝛾] [𝛿]
[id] : A[id] ≡ A
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Booleans in a weak CwF (i)

Bool : Ty Γ
Bool[] : Bool[𝛾] = Bool
true : Tm Γ Bool
true[] : Bool[]∗ (true[𝛾]) = true
false : Tm Γ Bool
false[] : Bool[]∗ (false[𝛾]) = false
ind : (P : Ty (Γ ⊲Bool)) → Tm Γ (P [⟨true⟩]) → Tm Γ (P [⟨false⟩]) →

(b : Tm Γ Bool) → Tm Γ (P [⟨b⟩])
ind[] : (𝛼 b)∗ ((ind P p p′ b) [𝛾]) =

ind (Bool[]∗ (P [𝛾↑])) (true[]∗ ((𝛼 true)∗ (p[𝛾]))) (false[]∗ ((𝛼 false)∗ (p′ [𝛾])))
(Bool[]∗ (b[𝛾]))

Bool𝛽1 : ind P p p′ true = p
Bool𝛽2 : ind P p p′ false = p′

where
𝛼 : (u : Tm Γ Bool) → P [⟨u⟩] [𝛾] = P [Bool[]∗ (𝛾↑)] [⟨Bool[]∗ (u[𝛾])⟩]
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Booleans in a weak CwF (ii)
𝛼 u :P [⟨u⟩] [𝛾 ] =( [◦])

P [⟨u⟩ ◦ 𝛾 ] ≡
P [ (id, [id]∗ u) ◦ 𝛾 ] =(,◦)
P [id ◦ 𝛾, [◦]∗ ( ( [id]∗ u) [𝛾 ]) ] =( – [ – ] and transport)
P [id ◦ 𝛾, [◦]∗ ( [id]∗ (u [𝛾 ]) ) ] =(idl)
P [𝛾, idl∗ ( [◦]∗ ( [id]∗ (u [𝛾 ]) ) ) ] =( ·∗ )
P [𝛾, ( [id] · [◦] · idl)∗ (u [𝛾 ]) ] ≡
P [𝛾, u [𝛾 ] ] ≡
P [𝛾, ( [id] · [id])∗ (u [𝛾 ]) ] =( ·∗ )
P [𝛾, [id]∗ ( [id]∗ (u [𝛾 ]) ) ] =(⊲𝛽2 )
P [𝛾, [id]∗ ( ( [◦] · ⊲𝛽1 )∗ (q[⟨u [𝛾 ]⟩]) ) ] ≡
P [𝛾, [id]∗ ( ( [◦] · [◦] · ass · ⊲𝛽1 · idr · [id])∗ (q[⟨u [𝛾 ]⟩]) ) ] =( ·∗ )
P [𝛾, ( [◦] · [◦] · ass · ⊲𝛽1 · idr · [id] · [id])∗ (q[⟨u [𝛾 ]⟩]) ] ≡
P [𝛾, ( [◦] · [◦] · ass · ⊲𝛽1 · idr)∗ (q[⟨u [𝛾 ]⟩]) ] =( ·∗ )
P [𝛾, idr∗ (⊲𝛽1∗ (ass∗ ( [◦]∗ ( [◦]∗ (q[⟨u [𝛾 ]⟩]) ) ) ) ) ] =(idr)
P [𝛾 ◦ id, ⊲𝛽1∗ (ass∗ ( [◦]∗ ( [◦]∗ (q[⟨u [𝛾 ]⟩]) ) ) ) ] =(⊲𝛽1 )
P [𝛾 ◦ (p ◦ ⟨u [𝛾 ]⟩) , ass∗ ( [◦]∗ ( [◦]∗ (q[⟨u [𝛾 ]⟩]) ) ) ] =(ass)
P [ (𝛾 ◦ p) ◦ ⟨u [𝛾 ]⟩, [◦]∗ ( [◦]∗ (q[⟨u [𝛾 ]⟩]) ) ] =( – [ – ] and transport)
P [ (𝛾 ◦ p) ◦ ⟨u [𝛾 ]⟩, [◦]∗ ( ( [◦]∗ q) [⟨u [𝛾 ]⟩]) ] =(,◦)
P [ (𝛾 ◦ p, [◦]∗ q) ◦ ⟨u [𝛾 ]⟩] ≡
P [ (𝛾 ◦ p, [◦]∗ q) ◦ ⟨(Bool[] · Bool[])∗ (u [𝛾 ])⟩] =( ·∗ )
P [ (𝛾 ◦ p, [◦]∗ q) ◦ ⟨Bool[]∗ (Bool[]∗ (u [𝛾 ]) )⟩] =(⟨ – ⟩ and transport)
P [ (𝛾 ◦ p, [◦]∗ q) ◦ Bool[]∗ ⟨Bool[]∗ (u [𝛾 ])⟩] =( – ◦ – and transport)
P [ (Bool[]∗ (𝛾 ◦ p, [◦]∗ q) ) ◦ ⟨Bool[]∗ (u [𝛾 ])⟩] ≡

P [ (Bool[]∗ (𝛾↑ ) ) ◦ ⟨Bool[]∗ (u [𝛾 ])⟩] =( [◦])

P [Bool[]∗ (𝛾↑ ) ] [⟨Bool[]∗ (u [𝛾 ])⟩]
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Substitution-strict booleans in a strict CwF

Bool : Ty Γ
Bool[] : Bool[𝛾] ≡ Bool
true : Tm Γ Bool
true[] : true[𝛾] ≡ true
false : Tm Γ Bool
false[] : false[𝛾] ≡ false
ind : (P : Ty (Γ ⊲Bool)) → Tm Γ (P [⟨true⟩]) → Tm Γ (P [⟨false⟩]) →

(b : Tm Γ Bool) → Tm Γ (P [⟨b⟩])
ind[] : (ind P p p′ b) [𝛾] ≡ ind (P [𝛾↑]) (p[𝛾]) (p′ [𝛾]) (b[𝛾])
Bool𝛽1 : ind P p p′ true = p
Bool𝛽2 : ind P p p′ false = p′
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