
Levels of abstraction when defining
type theory in type theory

Ambrus Kaposi

Eötvös Loránd University, Budapest

Workshop on type theory in type theory,
Gödel 90 conference

Nürtingen near Tübingen, 6 July 2021

What is the syntax of type theory?

What is the syntax of type theory?
(1) A term is a string:

What is the syntax of type theory?
(2) A term is a list of lexical elements:

What is the syntax of type theory?
(3) A term is a tree (AST):

What is the syntax of type theory?
(4) A term is a well-scoped syntax tree (ABT):

What is the syntax of type theory?
(5) A term is a well-typed syntax tree (intrinsic):

What is the syntax of type theory?
(6) A term is a well-typed syntax tree quotiented by
conversion (algebraic, equational theory, model-theoretic):

Going abstract
(1) string

(2) list of lexical elements

(3) syntax tree

(4) well scoped syntax tree

(5) well typed syntax

(6) well typed syntax quotiented

lexical analysis

parsing

scope checking

type checking

Going abstract: errors
(1) string

(2) list of lexical elements

(3) syntax tree

(4) well scoped syntax tree

(5) well typed syntax

(6) well typed syntax quotiented

lexical analysis

parsing

scope checking

type checking

invalid lexical element

bad num of params

variable not in scope

non-matching types

Going abstract: quotienting
(1) string

(2) list of lexical elements

(3) syntax tree

(4) well scoped syntax tree

(5) well typed syntax

(6) well typed syntax quotiented

lexical analysis

parsing

scope checking

type checking

"1+1" = "1 + 1"

[1,+, 1] = [(, 1,+, 1,)]

λx .x = λy .y

(λx .x + x) 3 = 3 + 3

Going concrete (i)
(1) string

(2) list of lexical elements

(3) syntax tree

(4) well scoped syntax tree

(5) well typed syntax

(6) well typed syntax quotiented

lexical analysis

parsing

scope checking

type checking

add spaces

add brackets

pick var names

normalise

Non-theorems (and another level)
(1) string

(2) list of lexical elements

(3) syntax tree

(4) well scoped syntax tree

(5) well typed syntax

(6) well typed syntax quotiented

α-renaming preserves
matching brackets

α-renaming preserves
typing

conversion preserves
typing

normalisation is sound

(7) higher order abstract syntax
everything is stable un-
der substitution

What do we need to define the syntax?
(1) string

(2) list of lexical elements

(3) syntax tree

(4) well scoped syntax tree

(5) well typed syntax

(6) well typed syntax quotiented

(7) higher order abstract syntax

strings

lists

inductive types (ITs)

indexed ITs

inductive-inductive types (IITs)

quotient IITs (QIITs)

QIITs with bindings

T.T. in T.T. at levels (1)–(4)
I String
I List {(,), λ, $, x , y , z , . . . }
I tree: inductive type given by the BNF grammar

(Abel–Öhman–Vezzosi POPL 2018)

v ::= x | y | z | . . .
t ::= v |λv .t | t $ t

I well-scoped tree: indexed inductive type

Tm : N→ Set
var : (i : N)→ i < n→ Tm n

lam : Tm (1 + n)→ Tm n

– $ – : Tm n→ Tm n→ Tm n

T.T. in T.T. at level (5)

I well-typed tree: inductive-inductive type1

(Chapman: Type theory should eat itself 2009)

Con : Set
Ty : Con→ Set
· : Con
– , – : (Γ : Con)→ Ty Γ→ Con
. . .

Tm : (Γ : Con)→ Ty Γ→ Set
– ⇒ – : Ty Γ→ Ty Γ→ Ty Γ

lam : Tm (Γ,A)B → Tm Γ (A⇒ B)

– $ – : Tm Γ (A⇒ B)→ Tm ΓA→ Tm ΓB

1the first B in the type of lam needs to be weakened, also in the next slide

T.T. in T.T. at level (6)
I well-typed tree quotiented: QIIT

(Dybjer CwF 1996, Altenkirch–Kaposi POPL 2016)

Con : Set
Ty : Con→ Set
· : Con
– , – : (Γ : Con)→ Ty Γ→ Con
Sub : Con→ Con→ Set
. . .

Tm : (Γ : Con)→ Ty Γ→ Set
–[–] : Ty Γ→ Sub∆ Γ→ Ty ∆

–[–] : Tm ΓA→ (σ : Sub∆ Γ)→ Tm∆ (A[σ])

lam : Tm (Γ,A)B → Tm Γ (A⇒ B)

– $ – : Tm Γ (A⇒ B)→ Tm ΓA→ Tm ΓB

β : lam t $ u = t[id, u]

T.T. in T.T. at level (7)

I higher order abstract syntax
(Hofmann 1999, Awodey’s natural models 2014,
Bocquet–Kaposi–Sattler 2021)

Ty : Set

Tm : Ty→ Set
– ⇒ – : Ty→ Ty→ Ty
lam : (TmA→ TmB)→ Tm (A⇒ B)

– $ – : Tm (A⇒ B)→ TmA→ TmB

β : lam t $ u = t u

Going concrete (ii)
(1) string

(2) list of lexical elements

(3) syntax tree

(4) well scoped syntax tree

(5) well typed syntax

(6) well typed syntax quotiented

(7) higher order abstract syntax

strings

lists

inductive types (ITs)

indexed ITs

IITs

QIITs

QIITs with bindings

“Gödel numbering”

indexed W types → W types

“typing” predicates

setoid model

presheaf model

What has been done at levels (6)/(7)?
I Normalisation (canonicity, decidability of equality).

I statement: Tm ΓA ∼= Nf ΓA
I normalisation by evaluation, logical predicates

(Altenkirch–Kaposi 2016, Coquand 2019)
I big-step normalisation (Altenkirch–Geniet TYPES 2019)

I Parametricity (Altenkirch–Kaposi 2016, Moeneclaey LICS 2021).
I Bidirectional type checking: only need to check equality

of level (6) terms.
I Elaboration. Metavariables can be handled by a modality,

they live at level (6). (e.g. Kovács ICFP 2020)

I Conservativity proofs (Hofmann 1995, Capriotti 2017).
I Call by value, call by name (see Levy’s call by push value).
I Closure conversion (Kovács TYPES 2018).

Some of the above at level (7): (Bocquet–Kaposi–Sattler 2021)

What is hard at levels (6)/(7)?

I Compilation to lower level language: the low level
language needs a matching equational theory.

I Level (7) cannot formalise calculi where some operations
are not stable under substitution (e.g. Martin-Löf’s first
presentation of t.t.)

I Level (6) formalisation is still hard because QIITs are not
supported (except Cubical Agda).

I Level (7) needs modalities when moving between models,
e.g. multi-modal type theory (Gratzer–Kavvos–Nuyts–Birkedal
2021).

Why not normal forms instead of quotienting?
(1) string

(2) list of lexical elements

(3) syntax tree

(4) well scoped syntax tree

(5) well typed syntax

(6) well typed syntax quotiented

(7) higher order abstract syntax

1. not easier to formalise

2. We want to write non-
normal proofs and pro-
grams

Questions

I Is there a presentation of normal forms of t.t. that does
not refer to the equational theory?

I What features of programming languages cannot be
described at the algebraic level? E.g. small step
semantics.

I Can we reproduce (Abel–Öhman–Vezzosi POPL 2018) at level
(6) without UIP?

I What is the best calculus for level (7)? Binding and
names built-in, maybe multi-modal t.t.?

