Normalisation by Evaluation for Dependent Types

Ambrus Kaposi
E6tvos Lorand University, Budapest, Hungary

(j.w.w. Thorsten Altenkirch, University of Nottingham)

FSCD, Porto
24 June 2016

Introduction

» Goal:

» Prove normalisation for a type theory with dependent types

» Using the metalanguage of type theory itself

» Structure of the talk:

v

Representing type theory in type theory

v

Specifying normalisation

v

NBE for simple types

v

NBE for dependent types

2/26

Representing type theory in type theory

Representing type theory in type theory

3/26

Representing type theory in type theory

Simple type theory the traditional way

Set of variables, alphabet including =, \ etc.
Well-formed expressions:

A:=1|A=A
Mro=-|Mhx:A
too=x| x.t|tt

An inductively defined relation:

(x:A)erl r-t: A
lN-x:A r'x:BFt: A

Nx:A-t: B Ft:A—-B THu:A
rN-Xx.t:A—B lN-tu:B

4/26

Representing type theory in type theory

Simple type theory in idealised Agda

data Ty
L
=

data Var
zero
suc

data Tm
var
lam

app

. Set where

: Ty

= oty =Ty = Ty
data Con :
: Con

: Con — Ty — Con

: Con — Ty — Set where

: Var (', A) A

:VarT A — Var ([',B)A

: Con — Ty — Set where

:VarTA — TmT A

: Tm(T,A)B — TmT (A= B)

: TmlIT(A=B) - TmlTA - TmIB

Set where

5/26

Representing type theory in type theory

Rules for dependent function space and a base type

A x:AEB

FFn(x: A).B
r'x:AFt:B r=f:N(x:A).B NFa:A
rl_)\th(XA)B I_'_fa:B[XP—)a]

- rFA:U
r=u FFEIA

6/26

Representing type theory in type theory

A typed syntax of dependent types (i)

» Types depend on contexts
= We need induction induction.

data Con : Set
data Ty : Con — Set

7/26

Representing type theory in type theory

A typed syntax of dependent types (ii)

» Types depend on contexts
= We need induction induction.

» Substitutions are mentioned in the application rule:
app: Tml(MAB) — (a: TmlA) — TmT (B]a)])
= We define an explicit substitution calculus.

data Con : Set

data Ty : Con — Set

data Tms : Con — Con — Set

dataTm : (I : Con) — Tyl — Set
[]: Tyl - Tms AT — Ty A

7/26

Representing type theory in type theory

A typed syntax of dependent types (iii)

» Types depend on contexts.
= We need induction induction.

» Substitutions are mentioned in the application rule:
= We define an explicit substitution calculus.

» The following conversion rule for terms:

r'FA~B Frt: A
r'-t:B

= Conversion (the relation including /3,) needs to be defined
mutually with the syntax.

» We need to add 4 new members to the inductive inductive
definition: ~ for contexts, types, substitutions and terms.

7/26

Representing type theory in type theory

Representing conversion

» Lots of boilerplate:

» The ~ relations are equivalence relations
» Coercion rules

» Congruence rules

» We need to work with setoids

» What we really want is to redefine equality = for the types
representing the syntax.

8/26

Representing type theory in type theory

Higher inductive types (HITs)

» An idea from homotopy type theory:
constructors for equalities.

» Example:

data | : Set where
left 2

right o
segment : left = right

9/26

Representing type theory in type theory

Higher inductive types (HITs)

» An idea from homotopy type theory:

constructors for equalities.

» Example:

data |
left
right

: Set where
s
s

segment : left = right

Recl :

%

(IM . Set)

(leftM - M)
(right™ - M)
|

segment™ - left™

— M

right™)

9/26

Representing type theory in type theory

Using the syntax

» We define the syntax as a HIIT, the conversion rules are
constructors: e.g. 5 : app (lam t) u = t[u].

» The arguments of the non-dependent eliminator form a model of
type theory, equivalent to Categories with Families.

record Model : Set where
field Con™ : Set
TyN| . Con™ — Set
™M - (M : ConM) - TWMT — Set
lam™ © TeM (T MA)BM — TmM (MM A B)
M appM (lamMt)u = t[u M

» The eliminator says that the syntax is the initial model. 1026

Specifying normalisation

Specifying normalisation

11/26

Specifying normalisation
Specifying normalisation
Neutral terms and normal forms (typed!):

nv Ne [A
AX .V NflC A

x|
n |

n
Vi
Normalisation is an isomorphism:

TmlA
completeness ' norm | I\Fﬁ T =1 Mistability

Soundness is given by congruence of equality:

t=t — normt=normt

12/26

Specifying normalisation

Normalisation by Evaluation (NBE)

Syntax Model

eliminator

quote

» First formulation (Berger and Schwichtenberg, 1991)
» Simply typed case (Altenkirch, Hofmann, Streicher 1995)

» Dependent types using untyped realizers (Abel, Coquand, Dybjer,
2007)

13/26

NBE for simple types

NBE for simple types

14 /26

NBE for simple types

The presheaf model

» Presheaf models are proof-relevant versions of Kripke models.

» They are parameterised over a category, we choose REN: objects
are contexts, morphisms are lists of variables.

15/26

NBE for simple types

The presheaf model

» Presheaf models are proof-relevant versions of Kripke models.

» They are parameterised over a category, we choose REN: objects
are contexts, morphisms are lists of variables.

» A type A is interpreted as a presheaf [A] : REN°P — Set.

» Given a context I we have [A]r : Set.
» Given a renaming 3 : REN(A,T), there is a [A]r — [A]a.

15/26

NBE for simple types

The presheaf model

» Presheaf models are proof-relevant versions of Kripke models.

» They are parameterised over a category, we choose REN: objects
are contexts, morphisms are lists of variables.

» A type A is interpreted as a presheaf [A] : REN°P — Set.

» Given a context I we have [A]r : Set.
» Given a renaming 3 : REN(A,T), there is a [A]r — [A]a.

» The function type is interpreted as the “possible world” function
space: [A = B]r = VA.REN(A,T) — [A]la — [B]a.

15/26

NBE for simple types

The presheaf model

>

| 2

Presheaf models are proof-relevant versions of Kripke models.

They are parameterised over a category, we choose REN: objects
are contexts, morphisms are lists of variables.

A type A is interpreted as a presheaf [A] : REN°P — Set.

» Given a context I we have [A]r : Set.
» Given a renaming 3 : REN(A,T), there is a [A]r — [A]a.

The function type is interpreted as the “possible world” function
space: [A = B]r = VA.REN(A,T) — [A]la — [B]a.

The interpretation of the base type is another parameter. We
choose [¢]r = NfT ¢

15/26

NBE for simple types

Quotation

The quote function is a natural transformation

quote, : [A] = Nf-A

quotear : [Alr — NfT'A

Defined mutually with unquote:

unquotey : Ne— A = [A]

16 /26

NBE for simple types

Quote and unquote

unquote 4 quote A
Ne-A———— 1A]

Nf - A

17/26

NBE for simple types

With completeness

/ /
unquote, quote,

Ne—-A Y (Tm-Ax [A])Ra

Nf - A

R is a presheaf logical relation between the syntax and the presheaf
model. It says equality at the base type.

18/26

NBE for dependent types

NBE for dependent types

19 /26

NBE for dependent types

The presheaf model and quote
Types are interpreted as families of presheaves.

[[] :REN® — Set
[FFA]:(A:REN) = [[]a — Set

20/26

NBE for dependent types

The presheaf model and quote

Types are interpreted as families of presheaves.

[[] :REN® — Set
[FFA]:(A:REN) = [[]a — Set

We define quote for contexts and types mutually.

quoter :[I] = Nfs—-T
quoterr4 : (a: [I]a) — [A]la o — Nf A (A[quoterA a])

20/26

NBE for dependent types

Defining quote, first try

unquoter quoter
M ———Nfs-T

Nes—1T

21/26

NBE for dependent types

Defining quote, first try

unquoter quoter

Nes—T Ir —— Nfs—

Quote for function space needs quote, o unquote, = id.

r

21/26

NBE for dependent types

Defining quote, first try

unquoter quoter

Nes—T Ir —— Nfs—

Quote for function space needs quote, o unquote, = id.
This follows from the logical relation Ry.

r

21/26

NBE for dependent types

Defining quote, first try

unquoter quoter

Nes—T Ir —— Nfs—

Quote for function space needs quote, o unquote, = id.
This follows from the logical relation Ry.
Let's define quote and completeness mutually!

r

21/26

NBE for dependent types

Defining quote, second try

unquote uote
O s (Tms =T x [Rr —— T Nfs—T

Nes—1T

r_ proJ r_1

Tms-T

22/26

NBE for dependent types

Defining quote, second try

unquoter quoter

Nes—T Y (Tms-T x [I)Rr —————— Nfs—T

r_7 proj

Tms-T

For unquote at the function space we need to define a semantic
function which works for every input, not necessarily related by the
relation. But quote needs ones which are related!

22/26

NBE for dependent types

Defining quote, last try

unquoter quoter
Nes—T Y (Tms—-T)Pr Nfs —
r_7 proj r_7
Tms—T

Use a presheaf logical predicate.

r

23/26

NBE for dependent types

Presheaf logical predicate

» The Yoneda embedding of the syntax:

:REN®? — Set :=Tms-T

: YReN YT — Set := Tm — A[-]
Yr=Ya ‘=0o0-—

Y 3 Y = t[-]

24 /26

Presheaf logical predicate

» The Yoneda embedding of the syntax.

NBE for dependent types

» P is a dependent version of the presheaf model:

: REN°P — Set = Tms—-T

: YRen YT — Set := Tm — A[-]
Yr=Ya ‘=0o0-—

Yr > Ya = t[-]

Pr : Zren Yr — Set

Pa: ZREN.Y.v, Pr — Set
P, : Ty, Pr = Pa[Y,]
Pt : Ty, Pr = Pa[Yq]

25 /26

NBE for dependent types

Presheaf logical predicate

» The Yoneda embedding of the syntax.

» P is a dependent version of the presheaf model:

Yr : REN°P — Set :=Tms-T Pr : Yren Y1 — Set
Ya:Zren Yr — Set :=Tm - A[-] Pa : ZReN,Y:,v, Pr — Set
Yo :Yr=Ya =0o- P : Ty, Pr = Pa[Yo]
Y Yr = Ya = t[-] Pe - Ty, Pr > PalYd]

» We need the dependent eliminator to define it.
» At the base type:

» We had: [tJr =Nflcand R, tn=(t="n")
» Now we have: P, t = X(n: Nfl.).(t

25 /26

Summary

Summary

>

We defined the typed syntax of type theory as an explicit
substitution calculus using a quotient inductive inductive type

Normalisation is specified as an isomorphism between terms and
normal forms

We proved normalisation and completeness using a proof-relevant
presheaf logical predicate

Most of this has been formalised in Agda
Stability, injectivity of type constructors can be proven

Question: how to prove decidability of conversion? N.b. normal
forms are indexed by non-normal types

26 /26

	Representing type theory in type theory
	Specifying normalisation
	NBE for simple types
	NBE for dependent types

