Type Theory in Type Theory using Quotient Inductive Types

Thorsten Altenkirch, Ambrus Kaposi
University of Nottingham

POPL, St Petersburg, Florida
20 January 2016
Goal

- To represent the syntax of Type Theory inside Type Theory

Why?

- Study the metatheory in a nice language
- Template type theory
Expressing the judgements of Type Theory

\[\Gamma \vdash t : A \]

will be formalised as

\[t' : \text{Tm } \Gamma A \]

(We are not interested in untyped terms)
Simple type theory in Agda (i)

```agda
data Ty : Set where
  ι : Ty
  _⇒_ : Ty → Ty → Ty

data Con : Set where
  • : Con
  _,_ : Con → Ty → Con

data Var : Con → Ty → Set where
  zero : Var (Γ , A) A
  suc : Var Γ A → Var (Γ , B) A

data Tm : Con → Ty → Set where
  var : Var Γ A → Tm Γ A
  app : Tm Γ (A ⇒ B) → Tm Γ A → Tm Γ B
  lam : Tm (Γ , A) B → Tm Γ (A ⇒ B)
```
In addition, we need substitutions:

\[
\text{Tms} : \text{Con} \rightarrow \text{Con} \rightarrow \text{Set}
\]

\[
\[\] : \text{Tm} \Gamma A \rightarrow \text{Tms} \Delta \Gamma \rightarrow \text{Tm} \Delta A
\]

Now we can define a conversion relation:

\[
\sim : \text{Tm} \Gamma A \rightarrow \text{Tm} \Gamma A \rightarrow \text{Set}
\]

eg. \(\text{app (lam t) u} \sim t [\text{id , u}]\)

The intended syntax is a quotient:

\[
\text{Tm} \Gamma A \ / \ \sim
\]
The syntax of Dependent Type Theory (i)

- Types depend on contexts
- Substitutions are mentioned in the application rule:
 \[
 \text{app} : \text{Tm} \Gamma (\Pi A B) (a : \text{Tm} \Gamma A) \to \text{Tm} \Gamma (B [a])
 \]
- We need an inductive-inductive definition:

\[
\text{data} \ \text{Con} : \text{Set} \\
\text{data} \ \text{Ty} : \text{Con} \to \text{Set} \\
\text{data} \ \text{Tms} : \text{Con} \to \text{Con} \to \text{Set} \\
\text{data} \ \text{Tm} : (\Gamma : \text{Con}) \to \text{Ty} \Gamma \to \text{Set}
\]
In addition, there is a coercion rule for terms:

\[\Gamma \vdash A \sim B \quad \Gamma \vdash t : A \]

\[\Gamma \vdash t : B \]

This forces us to define conversion relations mutually:

- data Con : Set
- data Ty : Con → Set
- data Tms : Con → Con → Set
- data Tm : (Γ : Con) → Ty Γ → Set
- data _~Con_ : Con → Con → Set
- data _~Ty_ : Ty Γ → Ty Γ → Set
- data _~Tms_ : Tms Δ Γ → Tms Δ Γ → Set
- data _~Tm_ : Tm Γ A → Tm Γ A → Set
Lots of boilerplate

- The \(~X~\) relations are equivalence relations
- Coercion rules
- Congruence rules
- We need to work with setoids
The identity type \(_\equiv_\)

- Equality (the identity type) is an equivalence relation
- We can coerce between equal types
- Equality is a congruence
- What about the extra equalities (eg. \(\beta, \eta\) for \(\Pi\))?
Higher inductive types

- An idea from homotopy type theory: constructors for equalities.
- Example:

```plaintext
data I : Set where
  zero : I
  one : I
  segment : zero ≡ one
```
Higher inductive types

- An idea from homotopy type theory: constructors for equalities.
- Example:

\[
\textbf{data } I \quad : \quad \text{Set where}
\]

\[
\begin{align*}
\text{zero} & \quad : \quad I \\
\text{one} & \quad : \quad I \\
\text{segment} & \quad : \quad \text{zero } \equiv \text{one}
\end{align*}
\]

\[
Rcl \quad : \quad (I^M \quad : \quad \text{Set})
\]

\[
(\text{zero}^M \quad : \quad I^M) \\
(\text{one}^M \quad : \quad I^M) \\
(\text{segment}^M \quad : \quad \text{zero}^M \equiv \text{one}^M)
\]

\[
\rightarrow \quad I \rightarrow \quad I^M
\]
Quotient inductive types (QITs)

- A higher inductive type which is truncated to an h-set.
- They are *not* the same as quotient types: equality constructors are defined at the same time.
- QITs can be simulated in Agda.
The syntax of Dependent Type Theory (iii)

- We defined the syntax of a basic Type Theory as a quotient inductive inductive type (with Π and an uninterpreted family of types U, El)

- We don’t need to state the equivalence relation, coercion, congruence laws anymore

- We collect the arguments of the recursor into a record:

  ```
  record Model : Set where
    field Con_M : Set
    Ty^M : Con^M → Set
  ...
  ```

- which is the type of algebras for the QIT
 = the type of models of Type Theory, close to CwF
Applications (i): standard model

- A sanity check

- Every syntactic construct is interpreted as the corresponding metatheoretic construction.

\[
\begin{align*}
\text{Con}^M & \quad = \quad \text{Set} \\
\text{Ty}^M \ [\Gamma] & \quad = \quad [\Gamma] \rightarrow \text{Set} \\
\Pi^M \ [A] \ [B] \ \gamma & \quad = \quad (x : [A] \ \gamma) \rightarrow [B] \ (\gamma \ , \ x) \\
\text{lam}^M \ [t] \ \gamma & \quad = \quad \lambda x \rightarrow [t] \ (\gamma \ , \ x) \\
\ldots
\end{align*}
\]
Applications (ii): logical predicate interpretation

- An interpretation from the syntax into the syntax
- Bernardy-Jansson-Paterson: Parametricity and Dependent Types, 2012
- A type is interpreted as a logical predicate over that type
- A term is interpreted as a proof that it satisfies the predicate
- Automated derivation of free theorems
Applications (iii): presheaf model

- Given a category \mathcal{C}
- Contexts are presheaves over \mathcal{C}
- Types are families of presheaves, terms are sections
- Normalisation by evaluation (NBE):
 - A presheaf over the category of renamings
 - We can generalise NBE from Simple Type Theory to Type Theory (formalisation in progress)
Further work

- We internalized a very basic type theory, but this can be extended easily with universes and inductive types.

- We used axioms (quotient inductive types, functional extensionality) in our metatheory. This can be solved by using cubical type theory.

- If we work within HoTT, we can only eliminate into h-sets. Hence, the standard model doesn’t work as described.
Template type theory

Given a model of type theory, together with new constants in that model

We can interpret code that uses the new constants inside the model

The code can use all the conveniences such as implicit arguments, pattern matching etc.

This way we can justify extensions of type theory:

- guarded type theory
- local state monad
- parametricity
- homotopy type theory