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Abstract

In this paper we turn the setoid model of type theory into a syn-
tactic translation. More specifically, we define three type theories and
translations between them. The first one is MLTTProp which is plain in-
tensional Martin-Löf type theory with a definitionally proof irrelevant
(strict) universe of propositions. MLTTid+funext+propext

Prop extends this with
a propositional identity type and the axioms of functional extensional-
ity and propositional extensionality. The third theory is SeTT, setoid
type theory which has built-in syntax for working with setoids. We show
how MLTTid+funext+propext

Prop can be translated to MLTTProp using a syntactic
translation which follows the structure of the setoid model of type theory.
This translation (unlike the original setoid model) justifies a definitional
computation rule for the identity type.

A distinctive feature in SeTT is that the function space has two elim-
inators: one is the usual application, the other expresses preservation of
equality.

We leave the treatment of a universe where identity is equality of codes
as future work.

1 Introduction

Intensional type theory lacks extensionality principles such as equality of point-
wise equal functions, equality of equivalent propositions or quotient types. These
can be added to type theory as axioms, however this destroys its computational
behaviour. A systematic study of these principles was given in Hofmann’s the-
sis [13]. He suggests a setoid model of type theory which supports the previously
mentioned concepts. In this model, a type is interpreted by a set together with
an equivalence relation. The equivalence relation defines equality for the given
type: for example, functions are equal if they map equal inputs to equal outputs;
pairs are equal if they are pointwise equal. This is in contrast with Martin-Löf’s
inductive equality type with constructor refl and eliminator J where equality is
given once and for all for every type. It was shown by Altenkirch [1] that the
setoid model can be defined in a type-theoretic metatheory which supports a
definitionally proof-irrelevant universe of propositions. Recently, support for
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such universes was added to Agda (to appear in version 2.6.0) allowing a full
formalisation of Altenkirch’s setoid model.

In this paper we turn this setoid model into a syntactic translation, and then
turn this syntactic translation into a stand-alone type theory called setoid type
theory (SeTT).

More specifically, we define the following type theories and translations.
MLTTProp (Section 2) is a type theory with Π, Σ, Bool types and a defini-

tionally proof-irrelevant universe of propositions closed under Π, Σ, > and ⊥.
In Section 4 we define a syntactic translation from MLTTProp to itself which
explains equality for each type former. We call this the setoid translation. For
a type A, A∼ t0 t1 will be the proposition expressing equality of t0 and t1. The
symbol ∼ is an operation defined by induction on types, it is part of the trans-
lation.

The setoid translation is inspired by the setoid model of type theory [1]
and the parametricity translation for dependent types [5]. This relationship is
explained in Section 3.

In Section 5 we extend MLTTProp by Martin-Löf’s inductive identity type and
the axioms of functional and propositional extensionality and we call this type
theory MLTTid+funext+propext

Prop . We also extend the setoid translation to these new

constructions: that is, to a translation from MLTTid+funext+propext
Prop to MLTTProp.

Finally in Section 6, we define SeTT: we start with MLTTProp and add the
specification of the previous translation as derivation rules. The implemenation
of the translation is added as definitional equalities. In SeTT, the ∼ symbol in
A∼ t0 t1 is part of the syntax (and not an operation). Another feature of SeTT is
that the function space has two eliminators. The first is application, the second
expresses that the function respects equality — this is in line with the setoid
model where a function is modelled by a pair: a function and a proof that it
respects equality. We conjecture that we can justify SeTT by a translation into
MLTTProp where the syntax ∼ is modelled by the operation ∼.

Note that we don not cover a universe of setoids, we only have a universe of
propositions.

Most of Section 3 was formalised in the pre-release version of Agda (to
appear as version 2.6.0) which supports a definitionally proof-irrelevant universe
of propositions. The links to the formalisation are given in that section.

1.1 Related work

Observational type theory (OTT) [4] has the same motivation and goals to our
work. It combines Altenkirch’s setoid model [1,13] and McBride’s heterogeneous
equality [17] which is morally (t ' t′) = Σ(p : IdUAB).IdB (transport p t) t′. In-
stead of this heterogeneous equality, we use an identity type which is defined as
a logical relation following [5]. Previously we attempted to use logical relations
to define a cubical type theory [3] where equality is not necessarily a propo-
sition. This work however is unfinished: the combinatorial complexity arising
from equalities between equalities so far prevents us from writing down all the
computation rules for that theory. In the setoid case, this problem dissappears
by truncating equality to be a proposition.

A very powerful extensionality principle is Voevodsky’s univalence axiom
[19]. The cubical set model of type theory [6] is a constructive model justifying
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this axiom. A type theory extracted from this model is cubical type theory [9].
The relationship between the cubical set model and cubical type theory is similar
to the relationship between the setoid model and setoid type theory.

Compared to cubical type theory, our work has the advantage that the com-
putation rule for the identity type is definitional, and furthermore we have more
definitional equalities: while in cubical type theory identity of Σ types is isomor-
phic1 to the two pointwise identities, in our case the isomorphism is replaced by
a definitional equality. The situation is similar for other type formers. These
additional definitional equalities are the main motivation for Herbelin’s proposal
for a cubical type theory [11]. As SeTT supports uniqueness of identity proofs
(Streicher’s axiom K, [20]), it is incompatible with univalence.

A description of syntactic translations in general for type theory is [7]. In
contrast with this work, our translations only work on intrinsic (well-typed)
terms. A translation inspired by [5] for deriving computation rules from univa-
lence is given in [21]. This work does not define a new type theory but recovers
some computational power lost by adding the univalence axiom.

2 MLTTProp

The theory MLTTProp is intensional Martin-Löf type theory with Π, Σ, Bool
types and a universe of strict propositions. This means that any two elements
of a proposition are definitionally equal.

In the presentation we use named variables, we consider α-equivalent terms
equal and weakening is implicit. We treat this as a lightweight notation for the
formal version with De Bruijn indices and explicit weakenings.

We have four sorts: contexts, types and terms and (parallel) substitutions.
We stratify types into separate (predicative) levels, hence the index i for the
typing judgement.

` Γ Γ `i A Γ ` t : A σ : Γ⇒ ∆

We write Γ ` t t′ : A instead of Γ ` t : A and Γ ` t′ : A and similarly for
other judgements. We use an intrinsic syntax [2], that is, we only work with
valid contexts, well-formed types, well-typed terms and don’t consider preterms.
Also, everything is quotiented by definitional equality denoted =. This is the
same as working in a category with families [10] with extra structure, however
using variable names and implicit weakenings.

We use the following naming conventions for metavariables:

• universe levels: i, j

• contexts: Γ,∆,Θ

• types: A,B,C

• terms: t, u, v, w, a, b, c, e

• variables: x, y, z, f

• substitutions: σ, δ, ν

1This is a definitional isomorphism: A and B are definitionally isomorphic, if there is an
f : A→ B, a g : B → A and λx.f (g x) = λx.x and vice versa where = is definitional equality.
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Syntax for the substitution calculus:

` ·
` Γ Γ `i A
` Γ, x : A

(x : A) ∈ Γ

Γ ` x : A

∆ `i A σ : Γ⇒ ∆

Γ `i A[σ]

∆ ` t : A σ : Γ⇒ ∆
Γ ` t[σ] : A[σ]

` Γ
ε : Γ⇒ ·

σ : Γ⇒ ∆ Γ ` t : A[σ]

(σ, x 7→ t) : Γ⇒ (∆, x : A)

` Γ
idΓ : Γ⇒ Γ

σ : Θ⇒ ∆ δ : Γ⇒ Θ
σ ◦ δ : Γ⇒ ∆

Here we omitted most of the laws concerning substitutions. These amount to
saying that contexts and substitutions form a category with a terminal object ·
and comprehension which says that substitutions Γ⇒ (∆, x : A) are in a natural
one-to-one correspondance with substitutions σ : Γ⇒ ∆ and terms Γ ` t : A[σ].
We will omit substitution laws from the presentation of the rest of the type
formers for brevity. However we implicitly assume that every rule comes with
its obvious substitution law making everything stable under substitution. We
write t[x 7→ u] for t[(id, x 7→ u)] and letσ in t for t[σ].

Dependent function space is given by the following syntax. We use named
rules for definitional equalities so that we can refer back to them easily.

Γ `i A Γ, x : A `i B
Γ `i (x : A)→ B

Γ, x : A ` t : B

Γ ` λx.t : (x : A)→ B

Γ ` t : (x : A)→ B

Γ, x : A ` t@x : B
Πβ : (λx.t) @x = t Πη : λx.t@x = t

We write A → B for (x : A) → B when x does not appear in B. We write @

for the categorical applciation rule. The usual application rule can be recovered
using a substitution and we use the same @ notation: t@u := (t@x)[x 7→ u].

Σ-types are given by the following syntax.

Γ `i A Γ, x : A `i B
Γ `i (x : A)×B

Γ ` u : A Γ ` v : B[x 7→ u]

Γ ` (u, v) : (x : A)×B

Γ ` t : (x : A)×B
Γ ` pr0 t : A

Γ ` t : (x : A)×B
Γ ` pr1 t : B[x 7→ pr0 t]

Σβ0 : pr0 (u, v) = u Σβ1 : pr1 (u, v) = v Ση : (pr0 t, pr1 t) = t

We write A×B for (x : A)×B when x does not appear in B.
Booleans:

Γ `0 Bool Γ ` true : Bool Γ ` false : Bool

Γ, x : Bool `i C Γ ` t : Bool Γ ` u : C[x 7→ true] Γ ` v : C[x 7→ false]

Γ ` if t thenu else v : C[x 7→ t]

Boolβtrue : if true thenu else v = u Boolβfalse : if false thenu else v = v

We have a universe of strict propositions. Any two elements of a proposition
are equal: this is expressed by the rule irra.

Γ `i+1 Propi

Γ ` a : Propi
Γ `i a

Γ ` u : a Γ ` v : a

irra : u = v
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This universe is closed under dependent function space, dependent sum, unit
and empty types. Decoding an element of Prop is written using underline instead
of El. We use a, b, c as metavariables of type Prop. Also note that the domain
of the function space needs not be a proposition however needs to have the
same universe level. For Π and Σ the type formation rules, constructors and
destructors are overloaded.2

Γ `i A Γ, x : A ` b : Propi
Γ ` (x : A)→ b : Propi

Γ, x : A ` t : b

Γ ` λx.t : (x : A)→ b

Γ ` t : (x : A)→ b

Γ, x : A ` t@x : b
πβ : (λx.t) @x = t πη : λx.t@x = t

Γ ` a : Propi Γ, x : A ` b : Propi
Γ ` (x : a)× b : Propi

Γ ` u : a Γ ` v : b[x 7→ u]

Γ ` (u, v) : (x : a)× b

Γ ` t : (x : a)× b
Γ ` pr0 t : a

Γ ` t : (x : a)× b
Γ ` pr1 t : b[x 7→ pr0 t]

σβ0 : pr0 (u, v) = u σβ1 : pr1 (u, v) = v ση : (pr0 t, pr1 t) = t

Γ `0 > : Prop0 Γ ` tt : > Γ `0 ⊥ : Prop0

Γ `i C Γ ` t : ⊥
Γ ` abort t : C

Note that the definitional proof-irrelevance has the consequence that if we have
two pairs (t, u) and (t′, u′) which both have type (x : A) × b, then whenever
t = t′ we get (t, u) = (t′, u′). We will use this fact later.

3 From model to translation

Models of type theory are usually named after the interpretation of contexts. For
example, in the most basic model, the set model3, contexts are interpreted by
sets. Types become families of sets, substitutions functions and terms dependent
functions.

` Γ
JΓK : Set

Γ ` A
JAK : JΓK→ Set

σ : Γ⇒ ∆
JσK : JΓK→ J∆K

Γ ` t : A
JtK : (γ : JΓK)→ JAK γ

The above is the specification of the set model. Its implementation amounts to
saying how each different context, type, subsitution and term formation rule is
interpreted and showing that all the definitional equalities are respected. For
example, context extension is interpreted by Σ types: JΓ, x : AK := (γ : JΓK) ×
JAK γ. Function space is given by function space in the metatheory, abstraction
and application are also interpreted by their metatheoretic counterparts. The
β rule for function space comes from β for functions in the metatheory.

J(x : A)→ BK γ := (α : JAK γ)→ JBK (γ, α)

2An alternative way to define Π for propositions would be to decode it to the large Π,
that is, adding the rule (x : A)→ b = (x : A) → b. However, then the translation from
MLTTProp to MLTTProp given in Section 4 wouldn’t preserve this equality. For example, we
would have ((x : A)→ b)∼ f0 f1 = >, but also ((x : A)→ b)∼ f0 f1 = ((x : A) → b)∼ f0 f1 =

(x0 : |A|[0Γ])(x1 : |A|[1Γ])→ · · · 6= >.
3Click for an Agda formalisation in the style of [2]. We have similar links for later models.

5

https://bitbucket.org/akaposi/tt-in-tt/src/HEAD/StandardModel/Readme.agda


Jλx.tK γ := λα.JtK (γ, α)

Jt@uK γ := (JtK γ) (JuK γ)

JΠβK : J(λx.t) @uK = λγ.(Jλx.tK γ) (JuK γ) =

λγ.(λα.JtK (γ, α)) (JuK γ) = λγ.JtK (γ, JuK γ) = Jt[x 7→ u]K

The interpretation into the set model (denoted J–K) can also be seen as a syn-
tactic translation [7] from a source theory to target theory which has a Russel
universe Set closed under Π and Σ (and possibly more). With this view in
mind, we can write the specification of this syntactic translation as follows. We
distinguish the source and target theory judgements by the S and T subscripts.

`S Γ

· `T JΓK0 : Set

Γ `S A
· `T JAK0 : JΓK0 → Set

σ : Γ⇒S ∆

· `T JσK0 : JΓK0 → J∆K0

Γ `S t : A

· `T JtK0 : (γ : JΓK0)→ JAK0 γ

All source theory judgements are interpreted by target theory term judgements:
contexts become terms of type Set in the empty target context, types become
terms of a function type with codomain Set etc. Source theory definitional equal-
ities become target theory definitional equalities. This needs not be the case for
models: in a model, source theory definitional equalities become metatheoretic
equalities (which might not be definitional). For example, consider a situation
where S has definitional η for Σ types, and T does not have this rule, however
a propositional η rule can be proven. In this case we can define a model of S in
the metatheory T, but we are not able to define a syntactic translation from S

to T.
A different syntactic translation from S to T which also has a close relation

to the standard model is the identity translation specified as follows.

`S Γ

`T JΓK1

Γ `S A
JΓK1 `T JAK1

σ : Γ⇒ ∆

JσK1 : JΓK1 ⇒S J∆K1

Γ `S t : A

JΓK1 `T JtK1 : JAK1

Here, contexts are translated to contexts, types to types, substitutions to sub-
stitutions and terms to terms. J–K0 translates a context to an iterated Σ type (a
term of type Set) which is iterated as many times as the length of the context.
In contrast with this, J–K1 translates a context to a context of the same length.

The graph model of type theory models contexts by graphs (a set and a
homogeneous binary relation over it), types by “dependent” graphs, substitu-
tions by functions which respect the relations and terms by dependent functions
which respect the relations. We use J–KV and J–KE for the vertex and edge com-
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ponents of the model. The specification is the following.

` Γ

JΓKV : Set
JAKE : JΓKV → JΓKV → Set

Γ ` A
JAKV : JΓKV → Set
JAKE : ∀γ0 γ1.JΓKE γ0 γ1 → JAKV γ0 → JAKV γ1 → Set

σ : Γ⇒ ∆

JσKV : JΓKV → J∆KV
JσKE : ∀γ0 γ1.JΓKE γ0 γ1 → J∆KE (JσKV γ0) (JσKV γ1)

Γ ` t : A

JtKV : (γ : JΓKV )→ JAKV γ
JtKE : ∀γ0 γ1.(γ01 : JΓKE γ0 γ1)→ JAKE γ01 (JtKV γ0) (JtKV γ1)

Just as the set model can be viewed as a syntactic translation J–K0, the graph
model also has a syntactic translation variant 0 which simply makes explicit
that the above judgements are in a target type theory in the empty context.

It is not clear how to define the 1 variant of the graph syntactic translation.
A context should be interpreted by a context but also a binary relation over
the context. There is no notion of binary relation over a context in type theory.
However the equivalence of indexed families and display maps [8, p. 221] comes
to rescue: a graph can also be given by a set of vertices, a set of edges and two
functions dom and cod which give the endpoints of the edges. This variant of
the graph model is specified as follows.

` Γ

JΓKV : Set
JΓKE : Set
JΓKdom : JΓKE → JΓKV
JΓKcod : JΓKE → JΓKV

σ : Γ⇒ ∆

JσKV : JΓKV → J∆KV
JσKE : JΓKE → J∆KE
JσKdom : JσKV ◦ JΓKdom = J∆Kdom ◦ JσKE
JσKcod : JσKV ◦ JΓKcod = J∆Kcod ◦ JσKE

Γ ` A
JAKV : JΓKV → Set
JAKE : (γE : JΓKE)→ JAKV (JΓKdom γE)→ JAKV (JΓKcod γE)→ Set

Γ ` t : A

JtKV : (γ : JΓKV )→ JAKV γ
JtKE : (γE : JΓKE)→ JAKE γE

(
JtKV (JΓKdom γE)

) (
JtKV (JΓKcod γE)

)
The syntactic translation corresponding to this model is the parametricity trans-
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lation (logical relation translation) of Bernardy et al [5]. It is specified as follows.

`S Γ

`T JΓKV
`T JΓKE
JΓKdom : JΓKE ⇒T JΓKV
JΓKcod : JΓKE ⇒T JΓKV

σ : Γ⇒S ∆

JσKV : JΓKV ⇒T J∆KV
JσKE : JΓKE ⇒T J∆KE
JσKdom : JσKV ◦ JΓKdom = J∆Kdom ◦ JσKE
JσKcod : JσKV ◦ JΓKcod = J∆Kcod ◦ JσKE

Γ `S A
JΓKV `T JAKV
JΓKE , x0 : JAKV [JΓKdom], x1 : JAKV [JΓKcod] `T JAKE x0 x1

Γ `S t : A

JΓKV `T JtKV : JAKV
JΓKE `T JtKE : (JAKE x0 x1)

[
x0 7→ JtKV [JΓKdom], x1 7→ JtKV [JΓKcod]

]
Contexts become two contexts (vertices and edges) and two subsitutions (do-
main and codomain), substitutions become two substitutions and two equalities
corresponding to the equalities in the model. ◦ is now composition of substitu-
tions, while in the model it was function composition. In the model, JAKE was
a family indexed over three components, now it is a type where the three com-
ponents are in the context. The function application JAKV (JΓKdom γE) becomes
instantiation of the substitution JAKV [JΓKdom].

In fact, this translation works even when S and T are the same, and in this
case there is no need for the V components, these are just identity, i.e. JΓKV = Γ,
JAKV = A, JσKV = σ and JtKV = t. The unary variant of this translation was
formalised in Agda.

In the Section 4 we will define a similar translation for the setoid model [1].

4 A translation from MLTTProp to MLTTProp

In the setoid model [1], a context is given by a set together with a proof-irrelevent
equivalence relation. We think about this relation as propositonal equality.

` Γ

|Γ| : Set
Γ∼ : |Γ| → |Γ| → Prop
RΓ : (γ : |Γ|)→ Γ∼ γ γ
SΓ : Γ∼ γ0 γ1 → Γ∼ γ1 γ0

TΓ : Γ∼ γ0 γ1 → Γ∼ γ1 γ2 → Γ∼ γ0 γ2

We reformulate this as a syntactic translation using the indexed family – display
map equivalence as described in Section 3. The full specification is given in
Subsection 4.1. Given a context Γ, we translate it to a context |Γ|, and instead
of a relation we have a context Γ01 which is the total space of the relation. There
are two projections from Γ01 to |Γ|, these are given by substitutions 0Γ and 1Γ.
Reflexivity is a substitution RΓ : |Γ| ⇒ Γ01 such that when postcomposed with
the projections it results in identity. Symmetry is a substitution Γ01 ⇒ Γ01 such
that when postcomposed with one projection, it results in the other projection.
We use implicit quantification over γ0 and γ1 for readability. We will follow this
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notation later as well. Transitivity needs two substitutions into Γ01 which match
at their second and first projections, respectively. It produces a substitution into
Γ01 which gives the correct result when postcomposed with projections. The
fact that Γ∼ results in Prop is reflected by the irrΓ property: whenever there
are two substitutions into Γ01 which match at their first and second projections,
they are definitionally equal.

A type in the setoid model is given by the following components.

Γ ` A
|A| : |Γ| → Set
A∼ : Γ∼ γ0 γ1 → |A| γ0 → |A| γ1 → Prop
RA : (α : |A| γ)→ A∼ (RΓ γ)αα
SA : A∼ γ01 α0 α1 → A∼ (Γ∼ γ01)α1 α0

TA : A∼ γ01 α0 α1 → A∼ γ12 α1 α2 → A∼ (TΓ γ01 γ12)α0 α2

coeA : Γ∼ γ0 γ1 → |A| γ0 → |A| γ1

cohA : (γ01 : Γ∼ γ0 γ1)→ (α0 : |A| γ0)→ A∼ γ01 α0 (coeA γ01 α0)

There is a family of sets over |Γ| and a heterogeneous equality relation which
has dependent variants of the equivalence relation properties. In addition, there
is a function coe which lets us coerce between the same type at equal interpreta-
tions of the context. The last component coh makes sure that coercion respects
the relation for A. Reformulating these components as syntactic translations is
fairly straightforward: the dependencies are given as extra components in the
context. A∼ x0 x1 is a proposition in a context Γ01 extended with the two copies
of |A| substituted by the two projections from Γ01 to |Γ|. Reflexivity, symme-
try, coercion and coherence correspond similarly directly to their counterparts
in the model. Transitivity needs more care, here we need two substitutions into
Γ01 which match when postcomposed by projections, three terms of the corre-
sponding types and two heterogeneous equalities between these terms. We also
include an extra property coeR which says that coercion substituted by reflex-
ivity is the identity. This can also be included in the setoid model leading to
an elimination rule for the identity type with a definitional computation rule.
In an intensional metatheory, this setoid model needs functional extensionality
in the metatheory for the function space. However, when reformulating the
model as a syntactic translation, this requirement goes away, since functional
extensionality is true for definitional equality: it comes from the η for function
space.

In the type of coh, A∼ x0 (coeA x0) is an abbreviation for (A∼ x0 x1)[x1 7→
coeA x0]. This is similar to how we abbreviated (t@x)[x 7→ u] by t@u in Section
2. We will use the same abbreviation for operations which act in an extended
context (such as ∼, R, S, coe, coh).

Substitutions and terms are specified the same in the setoid model as in the
graph model (Section 3). There is no need for R, S, T components because
these are provable by proof irrelevance (unlike in the groupoid model [14, 16]).
A substitution is a function between the |– | sets which respects the ∼ relations.
In our syntactic reformulation we have a substitution between the |– | and 01

components with a naturality property. Terms are interpreted by a term of the
|– | type in the |– | context which respects the ∼ relation.

In contrast with the graph translation, we cannot make |Γ| the same as Γ.
The reason is that |(x : A) → B| is not simply (x : |A|) → |B|, but it also
includes a proof that the function respects the ∼ relations.
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In the rest of this section, we specify the setoid translation from MLTTProp

to MLTTProp and then give the full implementation.

4.1 Specification

For a context, type, term and substitution, the translation gives the following.
k stands for either 0 or 1, (1− 0) for 1 and (1− 1) for 0.

` Γ

` |Γ|
` Γ01

kΓ : Γ01 ⇒ |Γ|
RΓ : |Γ| ⇒ Γ01

kRΓ : kΓ ◦ RΓ = id|Γ|
SΓ : Γ01 ⇒ Γ01

kSΓ : kΓ ◦ SΓ = (1− k)Γ

` Γ
ρ ρ′ : Θ⇒ Γ01

∀k.kΓ ◦ ρ = kΓ ◦ ρ′

irrΓ : ρ = ρ′

` Γ
ρ01 ρ12 : Θ⇒ Γ01

1Γ ◦ ρ01 = 0Γ ◦ ρ12

TΓ ρ0 ρ1 : Θ⇒ Γ01

0TΓ : 0Γ ◦ TΓ ρ01 ρ12 = 0Γ ◦ ρ01

1TΓ : 1Γ ◦ TΓ ρ01 ρ12 = 1Γ ◦ ρ12

σ : Γ⇒ ∆

|σ| : |Γ| ⇒ |∆|
σ01 : Γ01 ⇒ ∆01

natkσ : k∆ ◦ σ01 = |σ| ◦ kΓ

Γ `i A
|Γ| `i |A|
Γ01, x0 : |A|[0Γ], x1 : |A|[1Γ] ` A∼ x0 x1 : Propi
|Γ|, x : |A| ` RA x : A∼[RΓ]xx

(Γ, x : A)01 ` SA x0 x1 x01 : A∼[SΓ]x1 x0

Γ01, x0 : |A|[0Γ] ` coeA x0 : |A|[1Γ]
Γ01, x0 : |A|[0Γ] ` cohA x0 : A∼ x0 (coeA x0)

coeRA : coeA[RΓ]x = x

Γ `i A
ρ01 ρ12 : Θ⇒ Γ01

1Γ ◦ ρ01 = 0Γ ◦ ρ12

Θ ` t0 : |A|[0Γ ◦ ρ01]
Θ ` t1 : |A|[1Γ ◦ ρ01]
Θ ` t2 : |A|[1Γ ◦ ρ12]
Θ ` t01 : A∼[ρ01] t0 t1
Θ ` t12 : A∼[ρ12] t1 t2

Θ ` TA ρ01 ρ12 t0 t1 t2 t01 t12 : A∼[TΓ ρ01 ρ12] t0 t2

Γ ` t : A

|Γ| ` |t| : |A|
Γ01 ` t∼ : A∼ (|t|[0Γ]) (|t|[1Γ])

Now we finished specifying the setoid translation from MLTTProp to MLTTProp.
Now we list some useful direct consequences of the specification that we will use
in the implementation later.
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Prop-irrelevance and irrΓ have the following consequences. Given a σ : Γ⇒
∆, we have R∆ ◦ |σ| = σ01 ◦ RΓ by 0R∆, 1R∆, nat0σ, nat1σ, 0RΓ, 1RΓ and irr∆.
Similarly, we have S∆ ◦ σ01 = σ01 ◦ SΓ, SΓ ◦ SΓ = idΓ01 , SΓ ◦ RΓ = RΓ. For all
Γ ` t : A we have t∼[RΓ] = RA t and cohA[RΓ] t = RA t.

Coercion and coherence in the other direction are defined using symmetry
as follows.

Γ01, x1 : |A|[1Γ] ` coe∗A x1 := coeA[SΓ]x1 : |A|[0Γ]

Γ01, x1 : |A|[1Γ] ` coh∗A x1 := SA[SΓ]x1 (coe∗A x1) (cohA[SΓ]x1) : A∼ (coe∗A x1)x1

From coeRA we have that coe∗A[RΓ]x = x and coh∗A[RΓ]x = RA x.
We define transitivity for three subsitutions as follows.

ρ01 ρ12 ρ23 : Θ⇒ Γ01 1Γ ◦ ρ01 = 0Γ ◦ ρ12 1Γ ◦ ρ12 = 0Γ ◦ ρ23

T3
Γ ρ01 ρ12 ρ23 := TΓ ρ01 (TΓ ρ12 ρ23) : Θ⇒ Γ01

Similarly for three term equalities.

ρ01 ρ12 ρ23 : Θ⇒ Γ01

1Γ ◦ ρ01 = 0Γ ◦ ρ12

1Γ ◦ ρ12 = 0Γ ◦ ρ23

Θ ` t0 : |A|[0Γ ◦ ρ01]
Θ ` t1 : |A|[1Γ ◦ ρ01]
Θ ` t2 : |A|[1Γ ◦ ρ12]
Θ ` t3 : |A|[1Γ ◦ ρ23]
Θ ` t01 : A∼[ρ01] t0 t1
Θ ` t12 : A∼[ρ12] t1 t2
Θ ` t23 : A∼[ρ23] t2 t3

T3
A ρ01 ρ12 ρ23 t0 t1 t2 t3 t01 t12 t23 :=
TA ρ01 (TΓ ρ12 ρ23) t0 t1 t3 t01 (TA ρ12 ρ23 t1 t2 t3 t12 t23) : A∼[T3

Γ ρ01 ρ12 ρ23] t0 t3

4.2 Implementation

We list the implementation of the operations |– |, –∼, . . . , coeR for contexts,
types, substitutions and terms. Equality proofs are given by equational reason-
ing, we write the the proofs of equalities above the = symbols, when they have
an explicit name.

Contexts:

| · | := ·
|Γ, x : A| := |Γ|, x : |A|
·01 := ·
(Γ, x : A)01 := Γ01, x0 : |A|[0Γ], x1 : |A|[1Γ], x01 : A∼ x0 x1

k· := ε

kΓ,x:A := (kΓ, x 7→ xk)

R· := ε

RΓ,x:A := (RΓ, x0 7→ x, x1 7→ x, x01 7→ RA x)

kR· : k· ◦ R· = ε = id|·|
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kRΓ,x:A : kΓ,x:A ◦ RΓ,x:A = (kΓ ◦ RΓ, x 7→ x)
kRΓ= (id|Γ|, x 7→ x) = id|Γ,x:A|

S· := ε

SΓ,x:A := (SΓ, x0 7→ x1, x1 7→ x0, x01 7→ SA x0 x1 x01)

kS· : k· ◦ S· = ε = (1− k)·

kSΓ,x:A : kΓ,x:A ◦ SΓ,x:A = (kΓ ◦ SΓ, x 7→ x1−k)
kSΓ= ((1− k)Γ, x 7→ x1−k) =

(1− k)Γ,x:A

T· ρ ρ
′ := ε

TΓ,x:A (ρ01, x0 7→ t0, x1 7→ t1, x01 7→ t01) (ρ12, x0 7→ t1, x1 7→ t2, x01 7→ t12) :=

(TΓ ρ01 ρ12, x0 7→ t0, x1 7→ t2, x01 7→ TA ρ01 ρ12 t0 t1 t2 t01 t12)

kT· : k· ◦ T· ρ0 ρ1 = ε = k· ◦ ρk
0TΓ,x:A : 0Γ,x:A ◦ TΓ,x:A (ρ01, x0 7→ t0, x1 7→ t1, x01 7→ t01)

(ρ12, x0 7→ t1, x1 7→ t2, x01 7→ t12) =

(0Γ ◦ TΓ ρ01 ρ12, x 7→ t0)
0TΓ=

0Γ,x:A ◦ (ρ01, x0 7→ t0, x1 7→ t1, x01 7→ t01)

1TΓ,x:A : 1Γ,x:A ◦ TΓ,x:A (ρ01, x0 7→ t0, x1 7→ t1, x01 7→ t01)

(ρ12, x0 7→ t1, x1 7→ t2, x01 7→ t12) =

(1Γ ◦ TΓ ρ01 ρ12, x 7→ t2)
1TΓ=

1Γ,x:A ◦ (ρ12, x0 7→ t1, x1 7→ t2, x01 7→ t12)

irr· : ρ = ε = ρ′

irrΓ,x:A : (ρ, x0 7→ t0, x1 7→ t1, x01 7→ t01)
irrA∼[ρ] t0 t1=

(ρ, x0 7→ t0, x1 7→ t1, x01 7→ t′01)
irrΓ=

(ρ′, x0 7→ t0, x1 7→ t1, x01 7→ t′01)

Types:

|A[σ]| := |A|[|σ|]
|(x : A)→ B| := (f : (x : |A|)→ |B|)×

(x0 x1 : |A|)(x01 : A∼[RΓ]x0 x1)→ B∼[RΓ] (f @x0) (f @x1)

|(x : A)×B| := (x : |A|)× |B|
|Bool| := Bool

|Propi| := Propi
|a| := |a|

(A[σ])∼ x0 x1 := A∼[σ01]x0 x1

((x : A)→ B)∼ f0 f1 := (x0 : |A|[0Γ])(x1 : |A|[1Γ])(x01 : A∼ x0 x1)→
B∼ (pr0 f0 @x0) (pr0 f1 @x1)

((x : A)×B)∼ z0 z1 := letx0 7→ pr0 z0, x1 7→ pr0 z1 in

(x01 : A∼ x0 x1)×B∼ (pr1 z0) (pr1 z1)

Bool∼ x0 x1 := if x0 then (if x1 then> else⊥) else (if x1 then⊥ else>)
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Propi
∼ z0 z1 := (z0 → z1)× (z1 → z0)

a∼ x0 x1 := >

RA[σ] x := RA[|σ|]x
R(x:A)→B z := pr1 z

R(x:A)×B z := (RA (pr0 z),RB [x 7→ pr0 z] (pr1 z))

RBool x := if x then tt else tt

RPropi z := (λx.x, λx.x)

Ra x := tt

SA[σ] x0 x1 x01 := SA[σ01]x0 x1 x01

S(x:A)→B f0 f1 f01 :=

λx0 x1 x01.SB [x0 7→ x1, x1 7→ x0, x01 7→ SA[SΓ]x0 x1 x01]

(pr0 f0 @x1) (pr0 f1 @x0) (f01 @x1 @x0 @ SA[SΓ]x0 x1 x01)

S(x:A)×B z0 z1 z01 := letx0 7→ pr0 z0, x1 7→ pr0 z1, x01 7→ pr0 z01 in

(SA x0 x1 x01,SB (pr1 z0) (pr1 z1) (pr1 z01))

SBool x0 x1 x01 :=

if x1 then (if x0 then tt else abortx01) else (if x0 then abortx01 else tt)

SPropi z0 z1 z01 := (pr1 z01, pr0 z01)

Sa x0 x1 x01 := tt

coeA[σ] x0 := coeA[σ01]x0

coe(x:A)→B f0 := (λx1.coeB [x0 7→ coe∗A x1, x01 7→ coh∗A x1] (pr0 f0 @ coe∗A x1),

λx0 x1 x01.let

x0 7→ x0,

x1 7→ coe∗A x0,

x2 7→ coe∗A x1,

x3 7→ x1,

x01 7→ cohA[SΓ]x0,

x12 7→ T3
A idΓ01 (RΓ ◦ 1Γ) SΓ (coe∗A x0)x0 x1 (coe∗A x1)

(coh∗A x0)x01 (cohA[SΓ]x1)

x23 7→ coh∗A x1 in let

y0 7→ (coeB (pr0 f0 @x0))[x0 7→ x1, x1 7→ x0, x01 7→ coh∗A x0],

y1 7→ pr0 f0 @x1,

y2 7→ pr0 f0 @x2,

y3 7→ (coeB (pr0 f0 @x0))[x0 7→ x2, x1 7→ x3, x01 7→ x23],

y01 7→ (SB (pr0 f0 @x0) (coeB (pr0 f0 @x0)) (cohB (pr0 f0 @x0)))[x0 7→ x1,

x1 7→ x0, x01 7→ coh∗A x0],

y12 7→ pr1 f0 @x1 @x2 @x12,

y23 7→ (cohB (pr0 f0 @x0))[x0 7→ x2, x1 7→ x3, x01 7→ x23] in
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T3
B SΓ (RΓ ◦ 0Γ, x0 7→ x1, x1 7→ x2, x01 7→ x12)

(idΓ01 , x0 7→ x2, x1 7→ x3, x01 7→ x23) y0 y1 y2 y3 y01 y12 y23)

coe(x:A)×B z0 := letx0 7→ pr0 z0, x1 7→ coeA (pr0 z0), x01 7→ cohA (pr0 z0) in

(coeA x0, coeB (pr1 z0))

coeBool x0 := x0

coePropi z0 := z0

coea x0 := pr0 a
∼

@x0

cohA[σ] x0 := cohA[σ01]x0

coh(x:A)→B f0 := λx0 x1 x01.letx2 7→ coe∗A x1, x12 7→ cohA[SΓ]x1 in

letx02 7→ TA idΓ01 SΓ x0 x1 x2 x01 x12, x21 7→ coh∗A x1 in

TB (RΓ ◦ 0Γ, x1 7→ x2, x01 7→ x02) (x0 7→ x2, x01 7→ x21)

(pr0 f0 @x0) (pr0 f0 @x2) (coeB [x0 7→ x2, x01 7→ x21] (pr0 f0 @x2))

(pr1 f0 @x0 @x2 @x02) (cohB [x0 7→ x2, x01 7→ x21] (pr0 f0 @x2))

coh(x:A)×B z0 := letx0 7→ pr0 z0, x1 7→ coeA (pr0 z0), x01 7→ cohA (pr0 z0) in

(cohA x0, cohB (pr1 z0))

cohBool x0 := if x0 then tt else tt

cohPropi z0 := (λx.x, λx.x)

coha x0 := tt

coeRA[σ] : coeA[σ][RΓ]x0 = coeA[σ01 ◦ RΓ]x0 = coeA[R∆ ◦ |σ|]x0 =

(coeA[R∆]x0)[|σ|] coeRA= x0

coeR(x:A)→B : coe(x:A)→B [RΓ] f0 =

(λx1.coeB
[
RΓ, x0 7→ coe∗A[RΓ]x1, x01 7→ coh∗A[RΓ]x1

]
(pr0 f0 @ coe∗A[RΓ]x1), . . . )

coeRA=

(λx.coeB [RΓ,x:A] (pr0 f0 @x), . . . )
coeRB= (λx.(pr0 f0 @x), . . . ) = (pr0 f0, pr1 f0) = f0

coeR(x:A)×B : coe(x:A)×B [RΓ] z0 =

letx0 7→ pr0 z0, x1 7→ coeA[RΓ] (pr0 z0), x01 7→ cohA[RΓ] (pr0 z0) in

(coeA[RΓ]x0, coeB [RΓ] (pr1 z0))
coeRA=

letx 7→ pr0 z0 in (x, coeB [RΓ,x:A] (pr1 z0))
coeRB= (pr0 z0, pr1 z0) = z0

coeRBool : coeBool[RΓ]x0 = x0

coeRPropi : coePropi [RΓ] z0 = z0

coeRa x0 : coea[RΓ]x0 = pr0 (a∼[RΓ]) @x0 = pr0 (RPropi a) @x0 =

(λx.x) @x0 = x0

TA[σ] ρ01 ρ12 t0 t1 t2 t01 t12 := TA (σ01 ◦ ρ01) (σ01 ◦ ρ12) t0 t1 t2 t01 t12

T(x:A)→B ρ01 ρ12 t0 t1 t2 t01 t12 :=

λx0 x2 x02.letx1 7→ coeA[ρ01]x0, x01 7→ cohA[ρ01]x0 in

letx12 7→ TA (SΓ ◦ ρ01) (TΓ ρ01 ρ12)x1 x0 x2 (SA[ρ01]x0 x1 x01)x02 in
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TB ρ01 (ρ12, x0 7→ x1, x1 7→ x2, x01 7→ x12) (pr0 t0 @x0) (pr0 t1 @x1) (pr0 t2 @x2)

(t01 @x0 @x1 @x01) (t12 @x1 @x2 @x12)

T(x:A)×B ρ01 ρ12 t0 t1 t2 t01 t12 :=

letx0 7→ pr0 t0, x1 7→ pr0 t1, x2 7→ pr0 t2, x01 7→ pr0 t01, x12 7→ pr0 t12 in

(TA ρ01 ρ12 x0 x1 x2 x01 x12,

TB ρ01 (ρ12, x0 7→ x1, x1 7→ x2, x01 7→ x12) (pr1 t0) (pr1 t1) (pr1 t2) (pr1 t01) (pr1 t12))

TBool ρ01 ρ12 x0 x1 x2 x01 x12 :=

if x0 then (if x1 then (if x2 then tt else abortx12) else abortx01) else

(if x1 then abortx01 else (if x2 abortx12 else tt))

TPropi ρ01 ρ12 z0 z1 z2 z01 z12 :=

(λx0.pr0 z12 @(pr0 z01 @x0), λx2.pr1 z12 @(pr1 z01 @x2))

Ta ρ01 ρ12 x0 x1 x2 x01 x12 := tt

Substitutions:

|ε| := ε

|σ, x 7→ t| := (|σ|, x 7→ |t|)
|idΓ| := id|Γ|

|σ ◦ δ| := |σ| ◦ |δ|
ε01 := ε

(σ, x 7→ t)01 := (σ01, x0 7→ |t|[0Γ], x1 7→ |t|[1Γ], x01 7→ t∼)

idΓ
01 := idΓ01

(σ ◦ δ)01 := σ01 ◦ δ01

natkε : k· ◦ ε01 = ε = |ε| ◦ kΓ

natk(σ, x 7→t) : k∆,x:A ◦ (σ, x 7→ t)01 = (k∆ ◦ σ01, x 7→ |t|[kΓ])
natkσ=

(|σ| ◦ kΓ, x 7→ |t|[kΓ]) = |σ, x 7→ t| ◦ kΓ

natkidΓ : kΓ ◦ idΓ
01 = kΓ ◦ idΓ01 = kΓ = id|Γ| ◦ kΓ = |idΓ| ◦ kΓ

natkσ◦δ : k∆ ◦ σ ◦ δ01 = k∆ ◦ σ01 ◦ δ01 natkσ= |σ| ◦ kΘ ◦ δ01 natkδ=

|σ| ◦ |δ| ◦ kΓ = |σ ◦ δ| ◦ kΓ

Terms:

|x| := x

|t[σ]| := |t|[|σ|]
|λx.t| := (λx.|t|, λx0 x1 x01.t

∼[RΓ])

|t@x| := pr0 |t|@x
|Πβ| : |(λx.t) @x| = pr0 |λx.t|@x = (λx.|t|) @x = |t|
|Πη| : |λx.t@x| = (λx.|t@x|, λx0 x1 x01.(t@x)∼) =

(λx.pr0 |t|@x, λx0 x1 x01.t
∼[RΓ]x0 x1 x01) = (pr0 |t|, t∼[RΓ]) =

(pr0 |t|,R(x:A)→B t) = (pr0 |t|, pr1 |t|) = |t|
|(u, v)| := (|u|, |v|)
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|pr0 t| := pr0 |t|
|pr1 t| := pr1 |t|
|Σβ0| : |pr0 (u, v)| = pr0 |(u, v)| = pr0 (|u|, |v|) = |u|
|Σβ1| : |pr1 (u, v)| = pr1 |(u, v)| = pr1 (|u|, |v|) = |v|
|Ση| : |(pr0 t, pr1 t)| = (|pr0 t|, |pr1 t|) = (pr0 |t|, pr1 |t|) = |t|
|true| := true

|false| := false

|if t thenu else v| := if |t| then |u| else |v|
|Boolβtrue| : |if true thenu else v| = if true then |u| else |v| = |u|
|Boolβfalse| : |if false thenu else v| = if false then |u| else |v| = |v|

|irra| : |u|
irr|a|
= |v|

|(x : A)→ b| := (x : |A|)→ |b|
|λx.t| := λx.|t|
|t@x| := |t|@x
|πβ| : |(λx.t) @x| = |λx.t|@x = (λx.|t|) @x = |t|
|πη| : |λx.t@x| = λx.|t@x| = λx.|t|@x = |t|
|(u, v)| := (|u|, |v|)
|pr0 t| := pr0 |t|
|pr1 t| := pr1 |t|
|σβ0| : |pr0 (u, v)| = pr0 |(u, v)| = pr0 (|u|, |v|) = |u|
|σβ1| : |pr1 (u, v)| = pr1 |(u, v)| = pr1 (|u|, |v|) = |v|
|ση| : |(pr0 t, pr1 t)| = (|pr0 t|, |pr1 t|) = (pr0 |t|, pr1 |t|) = |t|
|>| := >
|tt| := tt

|⊥| := ⊥
|abort t| := abort |t|

x∼ := x01

(t[σ])∼ := t∼[σ01]

(λx.t)∼ := λx0 x1 x01.t
∼

(t@x)∼ := t∼ @x0 @x1 @x01

Πβ∼ : ((λx.t) @x)∼ = (λx.t)∼ @x0 @x1 @x01 =

(λx0 x1 x01.t
∼) @x0 @x1 @x01 = t∼

Πη∼ : (λx.t@x)∼ = λx0 x1 x01.(t@x)∼ =

λx0 x1 x01.t
∼

@x0 @x1 @x01 = t∼

(u, v)
∼

:= (u∼, v∼)

(pr0 t)
∼ := pr0 t

∼

(pr1 t)
∼ := pr1 t

∼

Σβ0
∼ : (pr0 (u, v))∼ = pr0 (u, v)∼ = pr0 (u∼, v∼) = u∼

Σβ1
∼ : (pr1 (u, v))∼ = pr1 (u, v)∼ = pr1 (u∼, v∼) = v∼
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Ση∼ : (pr0 t, pr1 t)
∼ = ((pr0 t)

∼, (pr1 t)
∼) = (pr0 t

∼, pr1 t
∼) = t∼

true∼ := tt

false∼ := tt

(if t thenu else v)∼ :=

if t[0] then (if t[1] thenu∼ else abort t∼) else (if t[1] then abort t∼ else v∼)

Boolβtrue∼ : (if true thenu else v)∼ = u∼

Boolβfalse∼ : (if false thenu else v)∼ = v∼

irra
∼ : u∼ = tt = v∼

((x : A)→ b)∼ =(
λf0 x1.pr0 (b∼[x0 7→ coe∗A x1, x01 7→ coh∗A x1]) @(f0 @ coe∗A x1),

λf1 x0.pr1 (b∼[x1 7→ coeA x0, x01 7→ cohA x0]) @(f1 @ coeA x0)
)

(λx.t)∼ := tt

(t@x)∼ := tt

πβ∼ : ((λx.t) @x)∼ = tt = t∼

πη∼ : (λx.t@x)∼ = tt = t∼

(u, v)
∼

:= tt

(pr0 t)
∼ := tt

(pr1 t)
∼ := tt

σβ0
∼ : (pr0 (u, v))∼ = tt = u∼

σβ1
∼ : (pr1 (u, v))∼ = tt = v∼

ση∼ : (pr0 t, pr1 t)
∼ = tt = t∼

>∼ := (λx.x, λx.x)

tt∼ := tt

⊥∼ := (λx.x, λx.x)

(abort t)∼ := abort (t[0Γ])

5 MLTTid+funext+propext
Prop

This type theory extends MLTTProp (Section 2) with an identity type which goes
into Prop and two axioms. The identity type has a definitional computation rule.

Γ `i A Γ `i t, t′ : A

Γ ` idA t t
′ : Propi

Γ ` t : A
Γ ` reflt : idA t t

Γ, x : A `i P Γ ` e : idA u v Γ ` w : P [x 7→ u]

Γ ` transportx.P ew : P [x 7→ v]

idβ : transportx.P reflu w = w

Note that we have uniqueness of identity proofs (UIP), hence we can derive the
eliminator J from transport, there is no need to state it.
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We have two extra rules: functional extensionality and propositional exten-
sionality.

Γ ` t, t′ : (x : A)→ B Γ, x : A ` e : idB (t@x) (t′ @x)

Γ ` funext e : id(x:A)→B t t
′

Γ ` a, a′ : Prop Γ ` w : (a→ a′)× (a′ → a)

Γ ` propextw : idProp a a
′

The setoid translation (Section 4) justifies these extra rules. This means
that we can extend the domain of the setoid translation from MLTTProp to

MLTTid+funext+propext
Prop . The extra rules all introduce terms (and term equalities),

so to extend the translation, we need to implement the two operations on terms
for these extra rules. The |– | operation is given as follows.

|idA t t′| := A∼[RΓ] |t| |t′|
|reflt| := RA |t|
|transportx.P ew| := coeP [RΓ, x0 7→ |u|, x1 7→ |v|, x01 7→ |e|] |w|
|idβ| : |transportx.P reflu w| =

coeP [RΓ, x0 7→ |u|, x1 7→ |u|, x01 7→ RA |u|] |w| =

(coeP [RΓ,x:A] z)[x 7→ |u|, z 7→ |w|] coeRP= |w|
|funext e| := λx0 x1 x01.TB (RΓ,x:A ◦ (x 7→ x0)) RΓ

(|t|@x0) (|t′|@x0) (|t′|@x1) (|e|[x 7→ x0]) (t′∼[RΓ] @x0 @x1 @x01)

|propextw| := |w|

The identity type of A is A∼ substituted by the RΓ, reflexivity is R for the
given type, transport comes from coercion and its computation rule from the
computation rule of coercion. Propositional extensionality is definitional. We
stated functional extensionality without using a heterogeneous equality, this is
why it needs transitivity: first we show that |t|@x0 is equal to |t′|@x0 using
|e|, then we use the fact that t′ respects equality to show that this is equal to
|t′|@x1.

The –∼ operation is implemented as follows.

(idA t t
′)∼ :=

(
λz.T3

A SΓ (RΓ ◦ 0Γ) idΓ01 (|t|[1Γ]) (|t|[0Γ]) (|t′|[0Γ]) (|t′|[1Γ])(
SA (|t|[0Γ]) (|t|[1Γ]) t∼

)
z t′∼

λz.T3
A idΓ01 (RΓ ◦ 0Γ) SΓ (|t|[0Γ]) (|t|[1Γ]) (|t′|[1Γ]) (|t′|[0Γ])

t∼ z
(
SA (|t′|[0Γ]) (|t′|[1Γ]) t′∼

))
reflt

∼ := tt

(transportx.P ew)∼ := let

x0 7→ coeP
[
RΓ ◦ 0Γ, x0 7→ |u|[0Γ], x1 7→ |v|[0Γ], x01 7→ |e|[0Γ]

]
(|w|[0Γ]),

x1 7→ |w|[0Γ],

x2 7→ |w|[1Γ],

x3 7→ coeP
[
RΓ ◦ 1Γ, x0 7→ |u|[1Γ], x1 7→ |v|[1Γ], x01 7→ |e|[1Γ]

]
(|w|[1Γ]) in

x01 7→ SP
[
RΓ ◦ 0Γ, x0 7→ |u|[0Γ], x1 7→ |v|[0Γ], x01 7→ |e|[0Γ]

]
x1 x0
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(
coeP

[
RΓ ◦ 0Γ, x0 7→ |u|[0Γ], x1 7→ |v|[0Γ], x01 7→ |e|[0Γ]

]
x1

)
,

x12 7→ w∼,

x23 7→ cohP
[
RΓ ◦ 1Γ, x0 7→ |u|[1Γ], x1 7→ |v|[1Γ], x01 7→ |e|[1Γ]

]
(|w|[1Γ]) in

T3
P

(
SΓ,x:A ◦

(
RΓ ◦ 0Γ, x0 7→ |u|[0Γ], x1 7→ |v|[0Γ], x01 7→ |e|[0Γ]

))
idΓ01(

RΓ ◦ 1Γ, x0 7→ |u|[1Γ], x1 7→ |v|[1Γ], x01 7→ |e|[1Γ]
)
x0 x1 x2 x3 x01 x12 x23

idβ∼ : (transportx.P reflu w)∼
irr(P [x 7→u])∼ (|w|[0Γ]) (|w|[0Γ])

= w∼

(funext e)∼ := tt

(propextw)∼ := tt

For identity, we need a logical equivalence between |idA t t′|[0Γ] and |idA t t′|[1Γ].
The functions are given by using transitivity on t∼, the input identity and t′∼.
For transport, we need a heterogeneous identity between two coercions. We use
transitivity on coherences (x01 and x23) and congruence of the original term
(x12).

Note that if we had a universe of setoids (where identity is equality of codes)
we would need to add an inductive-recursive universe of setoids to the syntax
of MLTTProp to justify it. Thus all the structure of the setoid translation would
be included in the target of the translation.

6 SeTT: from translation to theory

A naive way to turn the setoid syntactic translation into a type theory would
be adding the specification of the translation (Section 4.1) as derivation rules to
MLTTProp and adding the implementation (Section 4.2) as definitional equalities.
However this type theory would not have an identity type: for each type A, its
supposed identity type would be A∼[RΓ]x0 x1 which is in a different context,
|Γ| instead of Γ.

The contexts |Γ| and Γ are almost the same: the only difference is that
|Γ| has the extra components for functions saying that they respect the identity
type. Our solution to this problem is adding this extra component to the syntax :
in SeTT, in addition to @, functions have an extra eliminator ap (“apply path”
in homotopy type theory, sometimes also called cong for congruence).

Γ ` t : (x : A)→ B

Γ, x0 x1 : A, x01 : A∼[RΓ]x0 x1 ` ap t x0 x1 x01 : B∼[RΓ] (t@x0) (t@x1)

We know how to compute congruence when the function is introduced by a λ:

Πβap : ap (λx.t)x0 x1 x01 = t∼[RΓ]

Note that these rules refer to ∼ and other components of the setoid translation,
hence we are not able to simply add this rule to MLTTProp: we need to also add
syntax for the setoid translation.

As described above, these are added as extra rules to MLTTProp with the
exception of |– | which is not needed anymore. As a consequence, we need some
adjustments to handle Π types.
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The extra derivation rules of SeTT compared to MLTTProp are the above two
rules for ap and Πβap and the following.

` Γ

` Γ01

kΓ : Γ01 ⇒ Γ
RΓ : Γ⇒ Γ01

kRΓ : kΓ ◦ RΓ = idΓ

SΓ : Γ01 ⇒ Γ01

kSΓ : kΓ ◦ SΓ = (1− k)Γ

` Γ
ρ ρ′ : Θ⇒ Γ01

∀k.kΓ ◦ ρ = kΓ ◦ ρ′

irrΓ : ρ = ρ′

` Γ
ρ01 ρ12 : Θ⇒ Γ01

1Γ ◦ ρ01 = 0Γ ◦ ρ12

TΓ ρ0 ρ1 : Θ⇒ Γ01

0TΓ : 0Γ ◦ TΓ ρ01 ρ12 = 0Γ ◦ ρ01

1TΓ : 1Γ ◦ TΓ ρ01 ρ12 = 1Γ ◦ ρ12

σ : Γ⇒ ∆

σ01 : Γ01 ⇒ ∆01

natkσ : k∆ ◦ σ01 = σ ◦ kΓ

Γ `i A
Γ01, x0 : A[0Γ], x1 : A[1Γ] ` A∼ x0 x1 : Propi
Γ, x : A ` RA x : A∼[RΓ]xx

(Γ, x : A)01 ` SA x0 x1 x01 : A∼[SΓ]x1 x0

Γ01, x0 : A[0Γ] ` coeA x0 : A[1Γ]
Γ01, x0 : A[0Γ] ` cohA x0 : A∼ x0 (coeA x0)

coeRA : coeA[RΓ]x = x

Γ `i A
ρ01 ρ12 : Θ⇒ Γ01

1Γ ◦ ρ01 = 0Γ ◦ ρ12

Θ ` t0 : A[0Γ ◦ ρ01]
Θ ` t1 : A[1Γ ◦ ρ01]
Θ ` t2 : A[1Γ ◦ ρ12]
Θ ` t01 : A∼[ρ01] t0 t1
Θ ` t12 : A∼[ρ12] t1 t2

Θ ` TA ρ01 ρ12 t0 t1 t2 t01 t12 : A∼[TΓ ρ01 ρ12] t0 t2

Γ ` t : A

Γ01 ` t∼ : A∼ (t[0Γ]) (t[1Γ])

Note that these rules are the same as in the specification of the setoid translation
(Section 4.1) except we removed all the |– |s. We also add the implementation
of the translation (Section 4.2) as definitional equality rules. Again, we remove
the |– |s and adjust the rules for Π. We only list those rules which have to be
adjusted for Π and the extra rules for ap and Πβap.

((x : A)→ B)∼ f0 f1 = (x0 : A[0Γ])(x1 : A[1Γ])(x01 : A∼ x0 x1)→
B∼ (f0 @x0) (f1 @x1)

R(x:A)→B z = λx0 x1 x01.ap z x0 x1 x01
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S(x:A)→B f0 f1 f01 =

λx0 x1 x01.SB [x0 7→ x1, x1 7→ x0, x01 7→ SA[SΓ]x0 x1 x01]

(f0 @x1) (f1 @x0) (f01 @x1 @x0 @ SA[SΓ]x0 x1 x01)

coe(x:A)→B f0 = λx1.coeB [x0 7→ coe∗A x1, x01 7→ coh∗A x1] (f0 @ coe∗A x1)

coh(x:A)→B f0 = λx0 x1 x01.letx2 7→ coe∗A x1, x12 7→ cohA[SΓ]x1 in

letx02 7→ TA idΓ01 SΓ x0 x1 x2 x01 x12, x21 7→ coh∗A x1 in

TB (RΓ ◦ 0Γ, x1 7→ x2, x01 7→ x02) (x0 7→ x2, x01 7→ x21)

(f0 @x0) (f0 @x2) (coeB [x0 7→ x2, x01 7→ x21] (f0 @x2))

(ap f0 x0 x2 x02) (cohB [x0 7→ x2, x01 7→ x21] (f0 @x2))

coeR(x:A)→B : coe(x:A)→B [RΓ] f0 =

λx1.coeB
[
RΓ, x0 7→ coe∗A[RΓ]x1, x01 7→ coh∗A[RΓ]x1

]
(f0 @ coe∗A[RΓ]x1)

coeRA=

λx.coeB [RΓ,x:A] (f0 @x)
coeRB= λx.(f0 @x) = f0

T(x:A)→B ρ01 ρ12 t0 t1 t2 t01 t12 =

λx0 x2 x02.letx1 7→ coeA[ρ01]x0, x01 7→ cohA[ρ01]x0 in

letx12 7→ TA (SΓ ◦ ρ01) (TΓ ρ01 ρ12)x1 x0 x2 (SA[ρ01]x0 x1 x01)x02 in

TB ρ01 (ρ12, x0 7→ x1, x1 7→ x2, x01 7→ x12) (t0 @x0) (t1 @x1) (t2 @x2)

(t01 @x0 @x1 @x01) (t12 @x1 @x2 @x12)

(λx.t)∼ = λx0 x1 x01.t
∼

(t@x)∼ = t∼ @x0 @x1 @x01

Πβ∼ : ((λx.t) @x)∼ = (λx.t)∼ @x0 @x1 @x01 =

(λx0 x1 x01.t
∼) @x0 @x1 @x01 = t∼

Πη∼ : (λx.t@x)∼ = λx0 x1 x01.(t@x)∼ =

λx0 x1 x01.t
∼

@x0 @x1 @x01 = t∼

(ap t x0 x1 x01)∼ = tt

Πβap
∼ : (ap (λx.t)x0 x1 x01)∼ = tt = (t∼[RΓ])∼

We conjecture that we can justify the rules of setoid type theory by a syn-
tactic translation into MLTTProp: we interpret the non-MLTTProp parts of the
syntax as if they were operations and not syntax and the MLTTProp-part by |– |.

7 Conclusions and further work

In this paper we showed an example of turning a model of type theory into
a type theory. First we defined a syntactic translation corresponding to the
setoid model which mapped contexts to contexts (with possibly extra structure).
Then we added the translation itself as syntax to the theory. We had to make an
adjustment to the theory to make the context of the identity type the same as the
original context: this amounted to adding an additional congruence eliminator
to the function space. We expect that similar adjustments need to be made
for coinductive types. The justification of SeTT is left as further work, just as
its extension with a universe of setoids and general inductive and coinductive
types.
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Extensional type theory (ETT) can be translated to MLTTid+funext+propext
Prop

[12, 18]. ETT is considered as an internal language for topoi [15]. SeTT could
provide a more convenient language with decidability of definitional equality
and thus a convenient type checking algorithm. In the future, we would like
to investitage the exact relationship between setoid type theory and topoi. It
seems plausible that the current SeTT can serve as an internal language for
quasitopoi instead of topoi. We would need an open universe of propositions
for a subobject classifier: when it is proven that all inhabitants of a type are
identical, the type can be regarded as a proposition.

As further work, we mention the need for a generic method to turn (strict)
models of type theory into syntactic translations.
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