
Towards a framework for the implementation
and verification of translations between

argumentation models
(Extended away day version)

Bas van Gijzel

University of Nottingham

June 13, 2013

1 / 92

Outline

1 Argumentation theory: a perceived problem

2 An introduction and implementation of argumentation
frameworks (Dung)

3 Conclusions and future work

2 / 92

Outline

1 Argumentation theory: a perceived problem

2 An introduction and implementation of argumentation
frameworks (Dung)

3 Conclusions and future work

3 / 92

Argumentation theory

Interdisciplinary area with various applications:

• Law:
Systems modelling legal problems/cases,

• Decision making:
Organising information and source of efficiency in
decision theory,

• Communication theory:
Making argumentation in existing texts precise.

All these topics can give rise to different notions of argument
and therefore different argumentation models.
(Even different notions within the topics)

4 / 92

Argumentation theory

Interdisciplinary area with various applications:

• Law:
Systems modelling legal problems/cases,

• Decision making:
Organising information and source of efficiency in
decision theory,

• Communication theory:
Making argumentation in existing texts precise.

All these topics can give rise to different notions of argument
and therefore different argumentation models.
(Even different notions within the topics)

5 / 92

Argumentation theory

Interdisciplinary area with various applications:

• Law:
Systems modelling legal problems/cases,

• Decision making:
Organising information and source of efficiency in
decision theory,

• Communication theory:
Making argumentation in existing texts precise.

All these topics can give rise to different notions of argument
and therefore different argumentation models.
(Even different notions within the topics)

6 / 92

Argumentation theory

Interdisciplinary area with various applications:

• Law:
Systems modelling legal problems/cases,

• Decision making:
Organising information and source of efficiency in
decision theory,

• Communication theory:
Making argumentation in existing texts precise.

All these topics can give rise to different notions of argument
and therefore different argumentation models.
(Even different notions within the topics)

7 / 92

Argumentation theory

Interdisciplinary area with various applications:

• Law:
Systems modelling legal problems/cases,

• Decision making:
Organising information and source of efficiency in
decision theory,

• Communication theory:
Making argumentation in existing texts precise.

All these topics can give rise to different notions of argument
and therefore different argumentation models.

(Even different notions within the topics)

8 / 92

Argumentation theory

Interdisciplinary area with various applications:

• Law:
Systems modelling legal problems/cases,

• Decision making:
Organising information and source of efficiency in
decision theory,

• Communication theory:
Making argumentation in existing texts precise.

All these topics can give rise to different notions of argument
and therefore different argumentation models.
(Even different notions within the topics)

9 / 92

Abstract argumentation

Dung’s (abstract) argumentation framework are a golden
standard of argumentation.

• Most models are an instantiation of Dung’s model (are
translatable to)

• Relatively simple data structures/algorithms (complexity
still NP-complete or higher for most problems)

• Not too hard to switch between implementations of AF’s
because of the very basic data structure (a directed graph)

10 / 92

Abstract argumentation

Dung’s (abstract) argumentation framework are a golden
standard of argumentation.

• Most models are an instantiation of Dung’s model (are
translatable to)

• Relatively simple data structures/algorithms (complexity
still NP-complete or higher for most problems)

• Not too hard to switch between implementations of AF’s
because of the very basic data structure (a directed graph)

11 / 92

Abstract argumentation

Dung’s (abstract) argumentation framework are a golden
standard of argumentation.

• Most models are an instantiation of Dung’s model (are
translatable to)

• Relatively simple data structures/algorithms (complexity
still NP-complete or higher for most problems)

• Not too hard to switch between implementations of AF’s
because of the very basic data structure (a directed graph)

12 / 92

Abstract argumentation

Dung’s (abstract) argumentation framework are a golden
standard of argumentation.

• Most models are an instantiation of Dung’s model (are
translatable to)

• Relatively simple data structures/algorithms (complexity
still NP-complete or higher for most problems)

• Not too hard to switch between implementations of AF’s
because of the very basic data structure (a directed graph)

13 / 92

A perceived problem

• Lack of implementations of more complex argumentation
models

• Some recent efforts to optimise the evaluation of AF’s (and
ASP)

• Existing translations from complex models to Dung,
however again a lack of implementations

• Translations are complex
• Proofs of correctness are complex (page long proofs)

14 / 92

A perceived problem

• Lack of implementations of more complex argumentation
models

• Some recent efforts to optimise the evaluation of AF’s (and
ASP)

• Existing translations from complex models to Dung,
however again a lack of implementations

• Translations are complex
• Proofs of correctness are complex (page long proofs)

15 / 92

A perceived problem

• Lack of implementations of more complex argumentation
models

• Some recent efforts to optimise the evaluation of AF’s (and
ASP)

• Existing translations from complex models to Dung,
however again a lack of implementations

• Translations are complex
• Proofs of correctness are complex (page long proofs)

16 / 92

A perceived problem

• Lack of implementations of more complex argumentation
models

• Some recent efforts to optimise the evaluation of AF’s (and
ASP)

• Existing translations from complex models to Dung,
however again a lack of implementations

• Translations are complex
• Proofs of correctness are complex (page long proofs)

17 / 92

A proposed solution

• Provide implementations of Dung and some other models
(Carneades, ASPIC+)

• In a tutorial-like fashion,
• Close to the actual mathematical definitions

• In the same fashion: implement a translation

• Provide a formalisation of implementations and
translation

Result: a verified way to translate (unimplemented) models to
an efficiently implemented model.

18 / 92

A proposed solution

• Provide implementations of Dung and some other models
(Carneades, ASPIC+)

• In a tutorial-like fashion,
• Close to the actual mathematical definitions

• In the same fashion: implement a translation

• Provide a formalisation of implementations and
translation

Result: a verified way to translate (unimplemented) models to
an efficiently implemented model.

19 / 92

A proposed solution

• Provide implementations of Dung and some other models
(Carneades, ASPIC+)

• In a tutorial-like fashion,
• Close to the actual mathematical definitions

• In the same fashion: implement a translation

• Provide a formalisation of implementations and
translation

Result: a verified way to translate (unimplemented) models to
an efficiently implemented model.

20 / 92

A proposed solution

• Provide implementations of Dung and some other models
(Carneades, ASPIC+)

• In a tutorial-like fashion,
• Close to the actual mathematical definitions

• In the same fashion: implement a translation

• Provide a formalisation of implementations and
translation

Result: a verified way to translate (unimplemented) models to
an efficiently implemented model.

21 / 92

A proposed solution

• Provide implementations of Dung and some other models
(Carneades, ASPIC+)

• In a tutorial-like fashion,
• Close to the actual mathematical definitions

• In the same fashion: implement a translation

• Provide a formalisation of implementations and
translation

Result: a verified way to translate (unimplemented) models to
an efficiently implemented model.

22 / 92

Outline

1 Argumentation theory: a perceived problem

2 An introduction and implementation of argumentation
frameworks (Dung)

3 Conclusions and future work

23 / 92

Typical argument structure

Typical argument structure:

• a set of assumptions or premises,

• a method of reasoning or deduction,

• a conclusion.

rain
wet

Note that not all models imply a strictly formal structure.

24 / 92

Typical argument structure

Typical argument structure:

• a set of assumptions or premises,

• a method of reasoning or deduction,

• a conclusion.
rain
wet

Note that not all models imply a strictly formal structure.

25 / 92

Typical argument structure

Typical argument structure:

• a set of assumptions or premises,

• a method of reasoning or deduction,

• a conclusion.
rain
wet

Note that not all models imply a strictly formal structure.

26 / 92

Carneades argument structures (1)

Arguments contain:

• a set of premises and exceptions

• an inference step, called applicability

• another inference step called acceptability

• weights, used in acceptability

27 / 92

Carneades argument structures (1)

Arguments contain:

• a set of premises and exceptions

• an inference step, called applicability

• another inference step called acceptability

• weights, used in acceptability

28 / 92

Carneades argument structures (1)

Arguments contain:

• a set of premises and exceptions

• an inference step, called applicability

• another inference step called acceptability

• weights, used in acceptability

29 / 92

Carneades argument structures (1)

Arguments contain:

• a set of premises and exceptions

• an inference step, called applicability

• another inference step called acceptability

• weights, used in acceptability

30 / 92

Carneades argument structures (1)

Arguments contain:

• a set of premises and exceptions

• an inference step, called applicability

• another inference step called acceptability

• weights, used in acceptability

31 / 92

Carneades argument structures (2)

0.8

kill

murder

intent

a1

0.3

unreliable

intent

a2

witness

0.3

unreliable2witness2

¬intent

a3

32 / 92

Dung’s argumentation frameworks
(AFs)

In 1995, Dung gave an abstract account of argumentation.

• Was able to model several contemporary approaches to
non-monotonic logic,

• Some scholars believe it to be too abstract,

• However the model can be instantiated with more
structure

For instance: Carneades is translatable to Dung

33 / 92

Dung’s argumentation frameworks
(AFs)

In 1995, Dung gave an abstract account of argumentation.

• Was able to model several contemporary approaches to
non-monotonic logic,

• Some scholars believe it to be too abstract,

• However the model can be instantiated with more
structure

For instance: Carneades is translatable to Dung

34 / 92

Dung’s argumentation frameworks
(AFs)

In 1995, Dung gave an abstract account of argumentation.

• Was able to model several contemporary approaches to
non-monotonic logic,

• Some scholars believe it to be too abstract,

• However the model can be instantiated with more
structure

For instance: Carneades is translatable to Dung

35 / 92

Dung’s argumentation frameworks
(AFs)

In 1995, Dung gave an abstract account of argumentation.

• Was able to model several contemporary approaches to
non-monotonic logic,

• Some scholars believe it to be too abstract,

• However the model can be instantiated with more
structure

For instance: Carneades is translatable to Dung

36 / 92

Definition

An abstract argumentation framework (AF) is a tuple
AF = 〈Args ,Def〉 such that:

• Args is a set of (abstract) arguments,

• Def ⊆ Args ×Args .

In other words a directed graph.

A //B //C

37 / 92

Definition

An abstract argumentation framework (AF) is a tuple
AF = 〈Args ,Def〉 such that:

• Args is a set of (abstract) arguments,

• Def ⊆ Args ×Args .

In other words a directed graph.

A //B //C

38 / 92

Definition

An abstract argumentation framework (AF) is a tuple
AF = 〈Args ,Def〉 such that:

• Args is a set of (abstract) arguments,

• Def ⊆ Args ×Args .

In other words a directed graph.

A //B //C

39 / 92

Definition

An abstract argumentation framework (AF) is a tuple
AF = 〈Args ,Def〉 such that:

• Args is a set of (abstract) arguments,

• Def ⊆ Args ×Args .

In other words a directed graph.

A //B //C

40 / 92

AFs in Haskell
Given AF = 〈Args ,Def〉

Considering arguments as Strings:

data DungAF arg = AF [arg] [(arg ,arg)]
deriving (Show)

type AbsArg = String

A //B //C

And in Haskell:

a ,b ,c ::AbsArg
a = "A"

b = "B"

c = "C"

AF1 ::DungAF AbsArg
AF1 = AF [a ,b ,c] [(a ,b),(b ,c)]

41 / 92

AFs in Haskell
Given AF = 〈Args ,Def〉
Considering arguments as Strings:

data DungAF arg = AF [arg] [(arg ,arg)]
deriving (Show)

type AbsArg = String

A //B //C

And in Haskell:

a ,b ,c ::AbsArg
a = "A"

b = "B"

c = "C"

AF1 ::DungAF AbsArg
AF1 = AF [a ,b ,c] [(a ,b),(b ,c)]

42 / 92

AFs in Haskell
Given AF = 〈Args ,Def〉
Considering arguments as Strings:

data DungAF arg = AF [arg] [(arg ,arg)]
deriving (Show)

type AbsArg = String

A //B //C

And in Haskell:

a ,b ,c ::AbsArg
a = "A"

b = "B"

c = "C"

AF1 ::DungAF AbsArg
AF1 = AF [a ,b ,c] [(a ,b),(b ,c)]

43 / 92

AFs in Haskell
Given AF = 〈Args ,Def〉
Considering arguments as Strings:

data DungAF arg = AF [arg] [(arg ,arg)]
deriving (Show)

type AbsArg = String

A //B //C

And in Haskell:

a ,b ,c ::AbsArg
a = "A"

b = "B"

c = "C"

AF1 ::DungAF AbsArg
AF1 = AF [a ,b ,c] [(a ,b),(b ,c)]

44 / 92

AFs in Haskell
Given AF = 〈Args ,Def〉
Considering arguments as Strings:

data DungAF arg = AF [arg] [(arg ,arg)]
deriving (Show)

type AbsArg = String

A //B //C

And in Haskell:

a ,b ,c ::AbsArg
a = "A"

b = "B"

c = "C"

AF1 ::DungAF AbsArg
AF1 = AF [a ,b ,c] [(a ,b),(b ,c)]

45 / 92

Attacking with a set of arguments

Given AF = 〈Args ,Def〉.

A set S ⊆ Args of arguments attacks an argument A ∈ Args
iff there exists a B ∈ S such that (B ,A) ∈ Def .

In Haskell:

setAttacks :: Eq arg⇒ DungAF arg→ [arg]→
arg→ Bool

setAttacks (AF def) args arg
= or [b ≡ arg | (a ,b)← def ,a ∈ args]

Note that by the required Eq arg⇒, Haskell forces us to see
that we need an equality on arguments to be able implement
these functions.

46 / 92

Attacking with a set of arguments

Given AF = 〈Args ,Def〉.

A set S ⊆ Args of arguments attacks an argument A ∈ Args

iff there exists a B ∈ S such that (B ,A) ∈ Def .

In Haskell:

setAttacks :: Eq arg⇒ DungAF arg→ [arg]→
arg→ Bool

setAttacks (AF def) args arg
= or [b ≡ arg | (a ,b)← def ,a ∈ args]

Note that by the required Eq arg⇒, Haskell forces us to see
that we need an equality on arguments to be able implement
these functions.

47 / 92

Attacking with a set of arguments

Given AF = 〈Args ,Def〉.

A set S ⊆ Args of arguments attacks an argument A ∈ Args
iff there exists a B ∈ S such that (B ,A) ∈ Def .

In Haskell:

setAttacks :: Eq arg⇒ DungAF arg→ [arg]→
arg→ Bool

setAttacks (AF def) args arg
= or [b ≡ arg | (a ,b)← def ,a ∈ args]

Note that by the required Eq arg⇒, Haskell forces us to see
that we need an equality on arguments to be able implement
these functions.

48 / 92

Attacking with a set of arguments

Given AF = 〈Args ,Def〉.

A set S ⊆ Args of arguments attacks an argument A ∈ Args
iff there exists a B ∈ S such that (B ,A) ∈ Def .

In Haskell:

setAttacks :: Eq arg⇒ DungAF arg→ [arg]→
arg→ Bool

setAttacks (AF def) args arg
= or [b ≡ arg | (a ,b)← def ,a ∈ args]

Note that by the required Eq arg⇒, Haskell forces us to see
that we need an equality on arguments to be able implement
these functions.

49 / 92

Attacking with a set of arguments

Given AF = 〈Args ,Def〉.

A set S ⊆ Args of arguments attacks an argument A ∈ Args
iff there exists a B ∈ S such that (B ,A) ∈ Def .

In Haskell:

setAttacks :: Eq arg⇒ DungAF arg→ [arg]→
arg→ Bool

setAttacks (AF def) args arg
= or [b ≡ arg | (a ,b)← def ,a ∈ args]

Note that by the required Eq arg⇒, Haskell forces us to see
that we need an equality on arguments to be able implement
these functions.

50 / 92

Conflict-freeness

Given AF = 〈Args ,Def〉.

A set S ⊆ Args of arguments is called conflict-free iff
there is no A , B ∈ S such that (A ,B) ∈ Def .

conflictFree :: Eq arg⇒ DungAF arg→ [arg]→ Bool
conflictFree (AF def) args

= null [(a ,b) | (a ,b)← def ,a ∈ args ,b ∈ args]

51 / 92

Conflict-freeness

Given AF = 〈Args ,Def〉.

A set S ⊆ Args of arguments is called conflict-free iff

there is no A , B ∈ S such that (A ,B) ∈ Def .

conflictFree :: Eq arg⇒ DungAF arg→ [arg]→ Bool
conflictFree (AF def) args

= null [(a ,b) | (a ,b)← def ,a ∈ args ,b ∈ args]

52 / 92

Conflict-freeness

Given AF = 〈Args ,Def〉.

A set S ⊆ Args of arguments is called conflict-free iff
there is no A , B ∈ S such that (A ,B) ∈ Def .

conflictFree :: Eq arg⇒ DungAF arg→ [arg]→ Bool
conflictFree (AF def) args

= null [(a ,b) | (a ,b)← def ,a ∈ args ,b ∈ args]

53 / 92

Conflict-freeness

Given AF = 〈Args ,Def〉.

A set S ⊆ Args of arguments is called conflict-free iff
there is no A , B ∈ S such that (A ,B) ∈ Def .

conflictFree :: Eq arg⇒ DungAF arg→ [arg]→ Bool
conflictFree (AF def) args

= null [(a ,b) | (a ,b)← def ,a ∈ args ,b ∈ args]

54 / 92

Acceptability

An argument A ∈ Args is acceptable with respect to a set S of
arguments, iff for all arguments B ∈ S : if (B ,A) ∈ Def then
there is a C ∈ S for which (C ,B) ∈ Def .

Alternatively S defends A ,

acceptable :: Eq arg⇒ DungAF arg→ arg→
[arg]→ Bool

acceptable af@(AF def) a args
= and [setAttacks af args b | (b ,a ′)← def ,a ≡ a ′]

55 / 92

Acceptability

An argument A ∈ Args is acceptable with respect to a set S of
arguments, iff for all arguments B ∈ S : if (B ,A) ∈ Def then
there is a C ∈ S for which (C ,B) ∈ Def .

Alternatively S defends A ,

acceptable :: Eq arg⇒ DungAF arg→ arg→
[arg]→ Bool

acceptable af@(AF def) a args
= and [setAttacks af args b | (b ,a ′)← def ,a ≡ a ′]

56 / 92

Acceptability

An argument A ∈ Args is acceptable with respect to a set S of
arguments, iff for all arguments B ∈ S : if (B ,A) ∈ Def then
there is a C ∈ S for which (C ,B) ∈ Def .

Alternatively S defends A ,

acceptable :: Eq arg⇒ DungAF arg→ arg→
[arg]→ Bool

acceptable af@(AF def) a args
= and [setAttacks af args b | (b ,a ′)← def ,a ≡ a ′]

57 / 92

Characteristic function

The characteristic function of an AF , FAF : 2Args → 2Args , is a
function,

such that, given a conflict-free set of arguments S ,
FAF (S) = {A | A is acceptable w.r.t. to S }.

Given that FAF is ordered by the subset relation, FAF is
monotonic.

f :: Eq arg⇒ DungAF arg→ [arg]→ [arg]
f af@(AF args) s

= [a | a← args ,acceptable af a s]

58 / 92

Characteristic function

The characteristic function of an AF , FAF : 2Args → 2Args , is a
function, such that, given a conflict-free set of arguments S ,
FAF (S) = {A | A is acceptable w.r.t. to S }.

Given that FAF is ordered by the subset relation, FAF is
monotonic.

f :: Eq arg⇒ DungAF arg→ [arg]→ [arg]
f af@(AF args) s

= [a | a← args ,acceptable af a s]

59 / 92

Characteristic function

The characteristic function of an AF , FAF : 2Args → 2Args , is a
function, such that, given a conflict-free set of arguments S ,
FAF (S) = {A | A is acceptable w.r.t. to S }.

Given that FAF is ordered by the subset relation, FAF is
monotonic.

f :: Eq arg⇒ DungAF arg→ [arg]→ [arg]
f af@(AF args) s

= [a | a← args ,acceptable af a s]

60 / 92

Characteristic function

The characteristic function of an AF , FAF : 2Args → 2Args , is a
function, such that, given a conflict-free set of arguments S ,
FAF (S) = {A | A is acceptable w.r.t. to S }.

Given that FAF is ordered by the subset relation, FAF is
monotonic.

f :: Eq arg⇒ DungAF arg→ [arg]→ [arg]
f af@(AF args) s

= [a | a← args ,acceptable af a s]

61 / 92

Grounded extension (1)

An extension is a
“set of arguments that are acceptable when taken
together”

The grounded extension is the minimally acceptable set.

62 / 92

Grounded extension (1)

An extension is a
“set of arguments that are acceptable when taken
together”

The grounded extension is the minimally acceptable set.

63 / 92

Grounded extension (2)

Given a conflict-free set of arguments S and argumentation
framework AF :

S is a grounded extension iff it is the least fixed point of FAF .

64 / 92

Grounded extension (2)

Given a conflict-free set of arguments S and argumentation
framework AF :

S is a grounded extension iff it is the least fixed point of FAF .

65 / 92

Grounded extension in Haskell
S is a grounded extension iff it is the least fixed point of FAF .

AF1 ::DungAF AbsArg
AF1 = AF [a ,b ,c] [(a ,b),(b ,c)]

fAF1
:: [AbsArg]→ [AbsArg]

fAF1
= f AF1

groundedF :: Eq arg⇒ ([arg]→ [arg])→ [arg]
groundedF f = groundedF ′ f []
where groundedF ′ f args

| f args ≡ args = args
| otherwise = groundedF ′ f (f args)

Then as expected:

groundedF fAF1

> ["A","C"]

66 / 92

Grounded extension in Haskell
S is a grounded extension iff it is the least fixed point of FAF .

AF1 ::DungAF AbsArg
AF1 = AF [a ,b ,c] [(a ,b),(b ,c)]

fAF1
:: [AbsArg]→ [AbsArg]

fAF1
= f AF1

groundedF :: Eq arg⇒ ([arg]→ [arg])→ [arg]
groundedF f = groundedF ′ f []
where groundedF ′ f args

| f args ≡ args = args
| otherwise = groundedF ′ f (f args)

Then as expected:

groundedF fAF1

> ["A","C"]

67 / 92

Grounded extension in Haskell
S is a grounded extension iff it is the least fixed point of FAF .

AF1 ::DungAF AbsArg
AF1 = AF [a ,b ,c] [(a ,b),(b ,c)]

fAF1
:: [AbsArg]→ [AbsArg]

fAF1
= f AF1

groundedF :: Eq arg⇒ ([arg]→ [arg])→ [arg]
groundedF f = groundedF ′ f []
where groundedF ′ f args

| f args ≡ args = args
| otherwise = groundedF ′ f (f args)

Then as expected:

groundedF fAF1

> ["A","C"]

68 / 92

Outline

1 Argumentation theory: a perceived problem

2 An introduction and implementation of argumentation
frameworks (Dung)

3 Conclusions and future work

69 / 92

Overview of work done (1)

• Large parts of Dung’s definition have been implemented in
Haskell,

• Most of these definitions have been formalised in Agda,

• In previous work we implemented Carneades in Haskell,

• Provided a sketch of how to do a translation from
Carneades to Dung in Haskell and which properties one
would want to prove.

70 / 92

Overview of work done (1)

• Large parts of Dung’s definition have been implemented in
Haskell,

• Most of these definitions have been formalised in Agda,

• In previous work we implemented Carneades in Haskell,

• Provided a sketch of how to do a translation from
Carneades to Dung in Haskell and which properties one
would want to prove.

71 / 92

Overview of work done (1)

• Large parts of Dung’s definition have been implemented in
Haskell,

• Most of these definitions have been formalised in Agda,

• In previous work we implemented Carneades in Haskell,

• Provided a sketch of how to do a translation from
Carneades to Dung in Haskell and which properties one
would want to prove.

72 / 92

Overview of work done (1)

• Large parts of Dung’s definition have been implemented in
Haskell,

• Most of these definitions have been formalised in Agda,

• In previous work we implemented Carneades in Haskell,

• Provided a sketch of how to do a translation from
Carneades to Dung in Haskell and which properties one
would want to prove.

73 / 92

Overview of work done (2)

• All code is or will be available as literate Haskell/Agda,

• (Almost) Cabalised and uploaded the Dung
implementation to Hackage,

• Cabalised and uploaded the Carneades implementation to
Hackage,

• Installation instructions (hopefully) usable for
argumentation theorists.

This has caused some people to pick this up (used as a course
in Edinburgh by Alan Smaill).

Formalisation in Agda, the initial work on the translation and
all Haskell code is either discussed or linked to in the paper.

74 / 92

Overview of work done (2)

• All code is or will be available as literate Haskell/Agda,

• (Almost) Cabalised and uploaded the Dung
implementation to Hackage,

• Cabalised and uploaded the Carneades implementation to
Hackage,

• Installation instructions (hopefully) usable for
argumentation theorists.

This has caused some people to pick this up (used as a course
in Edinburgh by Alan Smaill).

Formalisation in Agda, the initial work on the translation and
all Haskell code is either discussed or linked to in the paper.

75 / 92

Overview of work done (2)

• All code is or will be available as literate Haskell/Agda,

• (Almost) Cabalised and uploaded the Dung
implementation to Hackage,

• Cabalised and uploaded the Carneades implementation to
Hackage,

• Installation instructions (hopefully) usable for
argumentation theorists.

This has caused some people to pick this up (used as a course
in Edinburgh by Alan Smaill).

Formalisation in Agda, the initial work on the translation and
all Haskell code is either discussed or linked to in the paper.

76 / 92

Overview of work done (2)

• All code is or will be available as literate Haskell/Agda,

• (Almost) Cabalised and uploaded the Dung
implementation to Hackage,

• Cabalised and uploaded the Carneades implementation to
Hackage,

• Installation instructions (hopefully) usable for
argumentation theorists.

This has caused some people to pick this up (used as a course
in Edinburgh by Alan Smaill).

Formalisation in Agda, the initial work on the translation and
all Haskell code is either discussed or linked to in the paper.

77 / 92

Overview of work done (2)

• All code is or will be available as literate Haskell/Agda,

• (Almost) Cabalised and uploaded the Dung
implementation to Hackage,

• Cabalised and uploaded the Carneades implementation to
Hackage,

• Installation instructions (hopefully) usable for
argumentation theorists.

This has caused some people to pick this up (used as a course
in Edinburgh by Alan Smaill).

Formalisation in Agda, the initial work on the translation and
all Haskell code is either discussed or linked to in the paper.

78 / 92

Overview of work done (2)

• All code is or will be available as literate Haskell/Agda,

• (Almost) Cabalised and uploaded the Dung
implementation to Hackage,

• Cabalised and uploaded the Carneades implementation to
Hackage,

• Installation instructions (hopefully) usable for
argumentation theorists.

This has caused some people to pick this up (used as a course
in Edinburgh by Alan Smaill).

Formalisation in Agda, the initial work on the translation and
all Haskell code is either discussed or linked to in the paper.

79 / 92

Conclusion

• High-level Haskell code close to the mathematical
definitions:

• Allowing greater understanding of the implementation,
• Written in a notation closely related to that of

argumentation theorists.

• Agda formalisation of the Dung implementation:
• The first formalisation (to my knowledge) of an

argumentation model,
• Easier realisation and formalisation of existing/future

translations,
• A better understanding of the meaning of some of the

complexer argumentation models.

80 / 92

Conclusion

• High-level Haskell code close to the mathematical
definitions:

• Allowing greater understanding of the implementation,

• Written in a notation closely related to that of
argumentation theorists.

• Agda formalisation of the Dung implementation:
• The first formalisation (to my knowledge) of an

argumentation model,
• Easier realisation and formalisation of existing/future

translations,
• A better understanding of the meaning of some of the

complexer argumentation models.

81 / 92

Conclusion

• High-level Haskell code close to the mathematical
definitions:

• Allowing greater understanding of the implementation,
• Written in a notation closely related to that of

argumentation theorists.

• Agda formalisation of the Dung implementation:
• The first formalisation (to my knowledge) of an

argumentation model,
• Easier realisation and formalisation of existing/future

translations,
• A better understanding of the meaning of some of the

complexer argumentation models.

82 / 92

Conclusion

• High-level Haskell code close to the mathematical
definitions:

• Allowing greater understanding of the implementation,
• Written in a notation closely related to that of

argumentation theorists.

• Agda formalisation of the Dung implementation:

• The first formalisation (to my knowledge) of an
argumentation model,

• Easier realisation and formalisation of existing/future
translations,

• A better understanding of the meaning of some of the
complexer argumentation models.

83 / 92

Conclusion

• High-level Haskell code close to the mathematical
definitions:

• Allowing greater understanding of the implementation,
• Written in a notation closely related to that of

argumentation theorists.

• Agda formalisation of the Dung implementation:
• The first formalisation (to my knowledge) of an

argumentation model,

• Easier realisation and formalisation of existing/future
translations,

• A better understanding of the meaning of some of the
complexer argumentation models.

84 / 92

Conclusion

• High-level Haskell code close to the mathematical
definitions:

• Allowing greater understanding of the implementation,
• Written in a notation closely related to that of

argumentation theorists.

• Agda formalisation of the Dung implementation:
• The first formalisation (to my knowledge) of an

argumentation model,
• Easier realisation and formalisation of existing/future

translations,

• A better understanding of the meaning of some of the
complexer argumentation models.

85 / 92

Conclusion

• High-level Haskell code close to the mathematical
definitions:

• Allowing greater understanding of the implementation,
• Written in a notation closely related to that of

argumentation theorists.

• Agda formalisation of the Dung implementation:
• The first formalisation (to my knowledge) of an

argumentation model,
• Easier realisation and formalisation of existing/future

translations,
• A better understanding of the meaning of some of the

complexer argumentation models.

86 / 92

Future work

• Further formalisation of Dung’s definition and theorems:

• Formalisation of fixpoints in Agda is a lot of work!

• Implementation and formalisation of the translation from
Carneades to Dung.

• Will involve doing some formal work to refactor out the
intermediate translation to ASPIC+,

• Might switch to Coq if Agda becomes infeasible.

• Implement and translate(?) my generalisation of the
ASPIC+ argumentation model

87 / 92

Future work

• Further formalisation of Dung’s definition and theorems:
• Formalisation of fixpoints in Agda is a lot of work!

• Implementation and formalisation of the translation from
Carneades to Dung.

• Will involve doing some formal work to refactor out the
intermediate translation to ASPIC+,

• Might switch to Coq if Agda becomes infeasible.

• Implement and translate(?) my generalisation of the
ASPIC+ argumentation model

88 / 92

Future work

• Further formalisation of Dung’s definition and theorems:
• Formalisation of fixpoints in Agda is a lot of work!

• Implementation and formalisation of the translation from
Carneades to Dung.

• Will involve doing some formal work to refactor out the
intermediate translation to ASPIC+,

• Might switch to Coq if Agda becomes infeasible.

• Implement and translate(?) my generalisation of the
ASPIC+ argumentation model

89 / 92

Future work

• Further formalisation of Dung’s definition and theorems:
• Formalisation of fixpoints in Agda is a lot of work!

• Implementation and formalisation of the translation from
Carneades to Dung.

• Will involve doing some formal work to refactor out the
intermediate translation to ASPIC+,

• Might switch to Coq if Agda becomes infeasible.

• Implement and translate(?) my generalisation of the
ASPIC+ argumentation model

90 / 92

Future work

• Further formalisation of Dung’s definition and theorems:
• Formalisation of fixpoints in Agda is a lot of work!

• Implementation and formalisation of the translation from
Carneades to Dung.

• Will involve doing some formal work to refactor out the
intermediate translation to ASPIC+,

• Might switch to Coq if Agda becomes infeasible.

• Implement and translate(?) my generalisation of the
ASPIC+ argumentation model

91 / 92

Future work

• Further formalisation of Dung’s definition and theorems:
• Formalisation of fixpoints in Agda is a lot of work!

• Implementation and formalisation of the translation from
Carneades to Dung.

• Will involve doing some formal work to refactor out the
intermediate translation to ASPIC+,

• Might switch to Coq if Agda becomes infeasible.

• Implement and translate(?) my generalisation of the
ASPIC+ argumentation model

92 / 92

	Argumentation theory: a perceived problem
	An introduction and implementation of argumentation frameworks (Dung)
	Conclusions and future work

