Towards a framework for the implementation
and verification of translations between
argumentation models

(Extended away day version)

Bas van Gijzel

University of Nottingham

June 13, 2013

1/92

Outline

@ Argumentation theory: a perceived problem

® An introduction and implementation of argumentation
frameworks (Dung)

©® Conclusions and future work

2/92

Outline

@ Argumentation theory: a perceived problem

3/92

Argumentation theory

Interdisciplinary area with various applications:

/92

Argumentation theory

Interdisciplinary area with various applications:

* Law:
Systems modelling legal problems/cases,

/92

Argumentation theory

Interdisciplinary area with various applications:
e Law:
Systems modelling legal problems/cases,
* Decision making:
Organising information and source of efficiency in
decision theory,

/92

Argumentation theory

Interdisciplinary area with various applications:
e Law:
Systems modelling legal problems/cases,
* Decision making:
Organising information and source of efficiency in
decision theory,

* Communication theory:
Making argumentation in existing texts precise.

/92

Argumentation theory

Interdisciplinary area with various applications:

e Law:
Systems modelling legal problems/cases,

* Decision making:
Organising information and source of efficiency in
decision theory,

* Communication theory:
Making argumentation in existing texts precise.

All these topics can give rise to different notions of argument
and therefore different argumentation models.

Argumentation theory

Interdisciplinary area with various applications:

* Law:
Systems modelling legal problems/cases,
* Decision making:
Organising information and source of efficiency in
decision theory,
* Communication theory:
Making argumentation in existing texts precise.

All these topics can give rise to different notions of argument
and therefore different argumentation models.
(Even different notions within the topics)

Abstract argumentation

Dung’s (abstract) argumentation framework are a
of argumentation.

10/92

Abstract argumentation

Dung’s (abstract) argumentation framework are a
of argumentation.

* Most models are an instantiation of Dung’s model (are
translatable to)

11/92

Abstract argumentation

Dung’s (abstract) argumentation framework are a
of argumentation.
* Most models are an instantiation of Dung’s model (are
translatable to)

* Relatively simple data structures/algorithms (complexity
still NP-complete or higher for most problems)

12/92

Abstract argumentation

Dung’s (abstract) argumentation framework are a
of argumentation.

* Most models are an instantiation of Dung’s model (are
translatable to)

* Relatively simple data structures/algorithms (complexity
still NP-complete or higher for most problems)

* Not too hard to switch between implementations of AF’s
because of the very basic data structure (a directed graph)

13/92

A perceived problem

* Lack of implementations of more complex argumentation
models

14/92

A perceived problem

* Lack of implementations of more complex argumentation
models

* Some recent efforts to optimise the evaluation of AF’s (and
ASP)

15/92

A perceived problem

* Lack of implementations of more complex argumentation
models

* Some recent efforts to optimise the evaluation of AF’s (and
ASP)

* Existing translations from complex models to Dung,
however again a lack of implementations

16/92

A perceived problem

* Lack of implementations of more complex argumentation
models

* Some recent efforts to optimise the evaluation of AF’s (and
ASP)

* Existing translations from complex models to Dung,
however again a lack of implementations

* Translations are complex
* Proofs of correctness are complex (page long proofs)

17/92

A proposed solution

* Provide implementations of Dung and some other models
(Carneades, ASPIC™)

18/92

A proposed solution

* Provide implementations of Dung and some other models
(Carneades, ASPIC™)

* In a tutorial-like fashion,
* Close to the actual mathematical definitions

19/92

A proposed solution

* Provide implementations of Dung and some other models
(Carneades, ASPIC™)

* In a tutorial-like fashion,
* Close to the actual mathematical definitions

* |n the same fashion: implement a translation

20/92

A proposed solution

* Provide implementations of Dung and some other models
(Carneades, ASPIC™)

* In a tutorial-like fashion,
* Close to the actual mathematical definitions

* |n the same fashion: implement a translation

* Provide a formalisation of implementations and
translation

21/92

A proposed solution

* Provide implementations of Dung and some other models
(Carneades, ASPIC™)

* In a tutorial-like fashion,
* Close to the actual mathematical definitions

* |n the same fashion: implement a translation
* Provide a formalisation of implementations and

translation

Result: a verified way to translate (unimplemented) models to
an efficiently implemented model.

22/92

Outline

® An introduction and implementation of argumentation
frameworks (Dung)

23/92

Typical argument structure

Typical argument structure:
* aset of assumptions or premises,
* a method of reasoning or deduction,

* a conclusion.

24/92

Typical argument structure

Typical argument structure:
* aset of assumptions or premises,
* a method of reasoning or deduction,

* a conclusion.
rain

wet

25/92

Typical argument structure

Typical argument structure:
* aset of assumptions or premises,
* a method of reasoning or deduction,

* a conclusion.
rain

wet
Note that not all models imply a strictly formal structure.

26/92

Carneades argument structures (1)

Arguments contain:

27/92

Carneades argument structures (1)

Arguments contain:

* a set of premises and exceptions

28/92

Carneades argument structures (1)

Arguments contain:
* a set of premises and exceptions

* an inference step, called applicability

29/92

Carneades argument structures (1)

Arguments contain:
* a set of premises and exceptions
* an inference step, called applicability

* another inference step called acceptability

30/92

Carneades argument structures (1)

Arguments contain:
* a set of premises and exceptions
* an inference step, called applicability
* another inference step called acceptability

* weights, used in acceptability

31/92

Carneades argument structures (2)

intent

kill

witness

unreliable

murder

intent

witness2

unreliable2

—intent

32/92

Dung’s argumentation frameworks
(AFs)

In 1995, Dung gave an abstract account of argumentation.

* Was able to model several contemporary approaches to
non-monotonic logic,

33/92

Dung’s argumentation frameworks
(AFs)

In 1995, Dung gave an abstract account of argumentation.

* Was able to model several contemporary approaches to
non-monotonic logic,

* Some scholars believe it to be too abstract,

34/92

Dung’s argumentation frameworks
(AFs)

In 1995, Dung gave an abstract account of argumentation.

* Was able to model several contemporary approaches to
non-monotonic logic,

* Some scholars believe it to be too abstract,

* However the model can be instantiated with more
structure

35/92

Dung’s argumentation frameworks
(AFs)

In 1995, Dung gave an abstract account of argumentation.

* Was able to model several contemporary approaches to
non-monotonic logic,

* Some scholars believe it to be too abstract,

* However the model can be instantiated with more
structure

For instance: Carneades is translatable to Dung

36/92

Definition

An abstract argumentation framework (AF) is a tuple
AF = (Args, Def) such that:

37/92

Definition

An abstract argumentation framework (AF) is a tuple
AF = (Args, Def) such that:

* Args is a set of (abstract) arguments,

* Def C Args x Args.

38/92

Definition

An abstract argumentation framework (AF) is a tuple
AF = (Args, Def) such that:

* Args is a set of (abstract) arguments,
* Def C Args x Args.

In other words a directed graph.

39/92

Definition

An abstract argumentation framework (AF) is a tuple
AF = (Args, Def) such that:

* Args is a set of (abstract) arguments,
* Def C Args x Args.

In other words a directed graph.

A—sB——C

40/92

AFs in Haskell
Given AF = (Args, Def)

41/92

AFs in Haskell
Given AF = (Args, Def)
Considering arguments as Strings:

42/92

AFs in Haskell
Given AF = (Args, Def)
Considering arguments as Strings:

data DungAF arg = AF [arg] [(arg, arg)]
deriving (Show)

type AbsArg = String

43/92

AFs in Haskell
Given AF = (Args, Def)
Considering arguments as Strings:

data DungAF arg = AF [arg] [(arg, arg)]
deriving (Show)

type AbsArg = String

A—B——C

44/92

AFs in Haskell
Given AF = (Args, Def)
Considering arguments as Strings:
data DungAF arg = AF [arg] [(arg, arg)]
deriving (Show)
type AbsArg = String

A—B——C

And in Haskell:

a,b,c:: AbsArg

a="A"

b="B"

c="C"

AF; :: DungAF AbsArg

AFy = AF [a,b,c][(a,b),(b,c)]

45/92

Attacking with a set of arguments

Given AF = (Args, Def).

46/92

Attacking with a set of arguments

Given AF = (Args, Def).

A set S C Args of arguments attacks an argument A € Args

47 /92

Attacking with a set of arguments

Given AF = (Args, Def).

A set S C Args of arguments attacks an argument A € Args
iff there exists a B € S such that (B, A) € Def.

48/92

Attacking with a set of arguments

Given AF = (Args, Def).

A set S C Args of arguments attacks an argument A € Args
iff there exists a B € S such that (B, A) € Def.

In Haskell:

setAttacks :: Eq arg = DungAF arg — [arg] —
arg — Bool
setAttacks (AF _ def) args arg
=or [b=arg|(a,b) « def,a € args]

49/92

Attacking with a set of arguments

Given AF = (Args, Def).

A set S C Args of arguments attacks an argument A € Args
iff there exists a B € S such that (B, A) € Def.

In Haskell:

setAttacks :: Eq arg = DungAF arg — [arg] —
arg — Bool
setAttacks (AF _ def) args arg
=or [b=arg|(a,b) « def,a € args]

Note that by the required Eq arg =, Haskell forces us to see
that we need an equality on arguments to be able implement
these functions.

50/92

Conflict-freeness

Given AF = (Args, Def).

51/92

Conflict-freeness

Given AF = (Args, Def).

A set S C Args of arguments is called conflict-free iff

52/92

Conflict-freeness

Given AF = (Args, Def).

A set S C Args of arguments is called conflict-free iff
thereis no A, B € S such that (A, B) € Def.

53/92

Conflict-freeness

Given AF = (Args, Def).

A set S C Args of arguments is called conflict-free iff
thereis no A, B € S such that (A, B) € Def.

conflictfree :: Eq arg = DungAF arg — [arg]| — Bool
conflictfree (AF _ def) args
=null [(a,b)|(a,b) < def,a € args, b € args]

54/92

Acceptability

An argument A € Args is acceptable with respect to a set S of
arguments, iff for all arguments B € S: if (B, A) € Def then
thereis a C € S for which (C, B) € Def.

55/92

Acceptability

An argument A € Args is acceptable with respect to a set S of
arguments, iff for all arguments B € S: if (B, A) € Def then
thereis a C € S for which (C, B) € Def.

Alternatively S defends A,

56/92

Acceptability

An argument A € Args is acceptable with respect to a set S of
arguments, iff for all arguments B € S: if (B, A) € Def then
thereis a C € S for which (C, B) € Def.

Alternatively S defends A,

acceptable :: Eq arg = DungAF arg — arg —
[arg] — Bool
acceptable af@(AF _ def) a args
= and [setAttacks af args b | (b,a’) « def,a = a’]

57/92

Characteristic function

The characteristic function of an AF, Fur : 2Args _; DATES s a
function,

58/92

Characteristic function

The characteristic function of an AF, Far : 24785 — 24785 is a
function, such that, given a conflict-free set of arguments S,
Far(S) ={A | A is acceptable w.r.t. to S}.

59/92

Characteristic function

The characteristic function of an AF, Far : 24785 — 24785 is a
function, such that, given a conflict-free set of arguments S,
Far(S) ={A | A is acceptable w.r.t. to S}.

Given that F,r is ordered by the subset relation, Fr is
monotonic.

60/92

Characteristic function

The characteristic function of an AF, Far : 24785 — 24785 is a
function, such that, given a conflict-free set of arguments S,
Far(S) ={A | A is acceptable w.r.t. to S}.

Given that F,r is ordered by the subset relation, Fr is
monotonic.

f::Eq arg = DungAF arg — [arg] — [arg]

f af@(AF args _) s
=[a|a « args, acceptable af a s|

61/92

Grounded extension (1)

An extension is a
“set of arguments that are acceptable when taken
together”

62/92

Grounded extension (1)

An extension is a
“set of arguments that are acceptable when taken
together”

The grounded extension is the minimally acceptable set.

63/92

Grounded extension (2)

Given a conflict-free set of arguments S and argumentation
framework AF:

64/92

Grounded extension (2)

Given a conflict-free set of arguments S and argumentation
framework AF:

S is a grounded extension iff it is the least fixed point of Fur.

65/92

Grounded extension in Haskell
S is a grounded extension iff it is the least fixed point of F,f.
AF; :: DungAF AbsArg
AFy = AF [a,b,c] [(a,b),(b,c)]

far, :: [AbsArg] — [AbsArg]

66/92

Grounded extension in Haskell
S is a grounded extension iff it is the least fixed point of F,f.
AF; :: DungAF AbsArg
AFy = AF [a,b,c] [(a,b),(b,c)]
far, :: [AbsArg] — [AbsArg]

groundedF :: Eq arg = ([arg] — [arg]) — [arg]
groundedF f = groundedF’ f]
where groundedF’ f args
| f args = args = args
| otherwise = groundedF’ f (f args)

67/92

Grounded extension in Haskell

S is a grounded extension iff it is the least fixed point of F,f.

AF; :: DungAF AbsArg
AFy = AF [a,b,c] [(a,b),(b,c)]
far, :: [AbsArg] — [AbsArg]

groundedF :: Eq arg = ([arg] — [arg]) — [arg]
groundedF f = groundedF’ f]
where groundedF’ f args
| f args = args = args
| otherwise = groundedF’ f (f args)

Then as expected:

groundedF far,
> [HAII} "C"]

68/92

Outline

©® Conclusions and future work

69/92

Overview of work done (1)

* Large parts of Dung’s definition have been implemented in
Haskell,

70/92

Overview of work done (1)

* Large parts of Dung’s definition have been implemented in
Haskell,

* Most of these definitions have been formalised in Agda,

71/92

Overview of work done (1)

* Large parts of Dung’s definition have been implemented in
Haskell,

* Most of these definitions have been formalised in Agda,

* In previous work we implemented Carneades in Haskell,

72/92

Overview of work done (1)

Large parts of Dung’s definition have been implemented in
Haskell,

Most of these definitions have been formalised in Agda,
In previous work we implemented Carneades in Haskell,

Provided a sketch of how to do a translation from
Carneades to Dung in Haskell and which properties one
would want to prove.

73/92

Overview of work done (2)

* All code is or will be available as literate Haskell/Agda,

74/92

Overview of work done (2)

* All code is or will be available as literate Haskell/Agda,

* (Almost) Cabalised and uploaded the Dung
implementation to Hackage,

75/92

Overview of work done (2)

* All code is or will be available as literate Haskell/Agda,

* (Almost) Cabalised and uploaded the Dung
implementation to Hackage,

* Cabalised and uploaded the Carneades implementation to
Hackage,

76/92

Overview of work done (2)

All code is or will be available as literate Haskell/Agda,

(Almost) Cabalised and uploaded the Dung
implementation to Hackage,

Cabalised and uploaded the Carneades implementation to
Hackage,

Installation instructions (hopefully) usable for
argumentation theorists.

77192

Overview of work done (2)

* All code is or will be available as literate Haskell/Agda,

* (Almost) Cabalised and uploaded the Dung
implementation to Hackage,

* Cabalised and uploaded the Carneades implementation to
Hackage,

* Installation instructions (hopefully) usable for
argumentation theorists.

This has caused some people to pick this up (used as a course
in Edinburgh by Alan Smaill).

78/92

Overview of work done (2)

* All code is or will be available as literate Haskell/Agda,

* (Almost) Cabalised and uploaded the Dung
implementation to Hackage,

* Cabalised and uploaded the Carneades implementation to
Hackage,

* Installation instructions (hopefully) usable for
argumentation theorists.

This has caused some people to pick this up (used as a course
in Edinburgh by Alan Smaill).

Formalisation in Agda, the initial work on the translation and
all Haskell code is either discussed or linked to in the paper.

79/92

Conclusion

* High-level Haskell code close to the mathematical
definitions:

80/92

Conclusion

* High-level Haskell code close to the mathematical
definitions:
* Allowing greater understanding of the implementation,

81/92

Conclusion

* High-level Haskell code close to the mathematical
definitions:
* Allowing greater understanding of the implementation,
* Written in a notation closely related to that of
argumentation theorists.

82/92

Conclusion

* High-level Haskell code close to the mathematical
definitions:
* Allowing greater understanding of the implementation,
* Written in a notation closely related to that of
argumentation theorists.

* Agda formalisation of the Dung implementation:

83/92

Conclusion

* High-level Haskell code close to the mathematical
definitions:
* Allowing greater understanding of the implementation,
* Written in a notation closely related to that of
argumentation theorists.

* Agda formalisation of the Dung implementation:

* The first formalisation (to my knowledge) of an
argumentation model,

84/92

Conclusion

* High-level Haskell code close to the mathematical
definitions:
* Allowing greater understanding of the implementation,
* Written in a notation closely related to that of
argumentation theorists.

* Agda formalisation of the Dung implementation:

* The first formalisation (to my knowledge) of an
argumentation model,

* Easier realisation and formalisation of existing/future
translations,

85/92

Conclusion

* High-level Haskell code close to the mathematical
definitions:
* Allowing greater understanding of the implementation,
* Written in a notation closely related to that of
argumentation theorists.
* Agda formalisation of the Dung implementation:
* The first formalisation (to my knowledge) of an
argumentation model,
* Easier realisation and formalisation of existing/future
translations,
* A better understanding of the meaning of some of the
complexer argumentation models.

86/92

Future work

e Further formalisation of Dung’s definition and theorems:

87/92

Future work

e Further formalisation of Dung’s definition and theorems:
* Formalisation of fixpoints in Agda is a lot of work!

88/92

Future work

e Further formalisation of Dung’s definition and theorems:
* Formalisation of fixpoints in Agda is a lot of work!

* Implementation and formalisation of the translation from
Carneades to Dung.

89/92

Future work

e Further formalisation of Dung’s definition and theorems:
* Formalisation of fixpoints in Agda is a lot of work!

* Implementation and formalisation of the translation from
Carneades to Dung.

* Will involve doing some formal work to refactor out the
intermediate translation to ASPICT,

90/92

Future work

e Further formalisation of Dung’s definition and theorems:
* Formalisation of fixpoints in Agda is a lot of work!
* Implementation and formalisation of the translation from
Carneades to Dung.

* Will involve doing some formal work to refactor out the
intermediate translation to ASPICT,
* Might switch to Coq if Agda becomes infeasible.

91/92

Future work

e Further formalisation of Dung’s definition and theorems:
* Formalisation of fixpoints in Agda is a lot of work!

* Implementation and formalisation of the translation from
Carneades to Dung.

* Will involve doing some formal work to refactor out the
intermediate translation to ASPICT,
* Might switch to Coq if Agda becomes infeasible.

* Implement and translate(?) my generalisation of the
ASPICT argumentation model

92/92

	Argumentation theory: a perceived problem
	An introduction and implementation of argumentation frameworks (Dung)
	Conclusions and future work

