
Eötvös Loránd University

Faculty of Informatics

Department of Programming Languages and

Compilers

Analysis Software for FACS-measurements

Supervisor: Tamás Kozsik Ambrus Kaposi

Associate Professor qualification:

Programmer Informatician BSc

Budapest, 2012

Contents

1 Introduction 4

2 The Task 6

2.1 Specification . 6

2.1.1 Reading and selecting measurement data 6

2.1.1.1 Input: FCS file . 6

2.1.1.2 Output: gated file 7

2.1.1.3 Steps from FCS to gated 8

2.1.2 Fitting functions . 9

2.1.2.1 Input: gated file . 10

2.1.2.2 Output: kinetics file 10

2.1.2.3 Steps from gated to kinetics 11

2.1.3 Comparing measurements . 13

2.2 Analysis of Requirements . 14

2.2.1 Communication with other programs 14

2.2.2 Runtime Environment . 15

2.2.3 Requirements for goodness of the program 15

2.2.3.1 Speed . 15

2.2.3.2 Accessibility . 15

2.2.3.3 Maintanance and failure handling 16

2.2.3.4 Security . 16

3 User Documentation 17

3.1 Program Structure . 17

3.2 FacsKin step-by-step User’s Guide . 19

3.2.1 Acquiring measurement data 19

3.2.2 Starting FacsKin . 20

3.2.2.1 Launch with Java Web Start 21

3.2.2.2 Launch from the ZIP bundle 21

3.2.3 Opening and gating FCS files 23

3.2.4 Uploading gated data . 26

1

3.2.5 Receiving .kinetics file as email attachment 27

3.2.6 Opening different .kinetics files and selecting a common function 28

3.2.6.1 Detailed description of the functions 29

3.2.7 Creating groups and comparing parameters of the selected

function in different groups 35

3.2.7.1 Exporting comparison data 38

3.2.7.2 Pairing measurements 39

3.3 Maintenance of FacsKin . 41

3.4 Caflux User’s Guide . 42

3.4.1 Installation . 42

3.4.2 Maintenance . 44

3.4.3 Uninstallation . 45

4 Developer Documentation 48

4.1 Structure . 48

4.2 FacsKin . 50

4.2.1 System Plan . 50

4.2.1.1 User Interface . 51

4.2.1.2 Table models . 56

4.2.1.3 Plots . 58

4.2.1.4 Data Containers . 60

4.2.1.5 Input/Output . 61

4.2.1.6 Math classes . 64

4.2.1.7 Error handling . 66

4.2.2 Implementation . 68

4.2.2.1 Version History . 68

4.2.2.2 Further Development 69

4.2.2.3 Interesting Algorithms 70

4.2.2.4 Compilation and Distribution 72

4.2.3 Testing . 74

4.2.3.1 Tests using the GUI 74

4.2.3.2 Unit tests . 80

4.2.3.3 Test results . 81

4.3 Caflux . 82

4.3.1 System Plan . 82

4.3.2 Implementation . 82

4.3.2.1 Further Development 86

4.3.3 Testing . 86

4.3.3.1 Unit Tests for fct-64.R 86

2

4.3.3.2 Common tests for FacsKin + Caflux 87

4.3.3.3 Performance of Caflux 88

Bibliography 88

Journal articles and books . 90

Websites . 91

3

Chapter 1

Introduction

Flow Cytometry [17] is a method for investigating the properties of microscopic

particles in a stream of liquid by exciting them with light and measuring the emission

and reflection properties individually for each particle. This technique can be used

for the sequential analysis of millions of particles during a 10-minute timeframe.

It is widely used in medicine both for diagnostics and research. A typical usage is

assessing the prevalence of different cell subsets in a sample containing biological

cells by staining the cells with subset-specific fluorescent dyes. The result of such a

measurement is a couple of parameters for each cell:

• Time: the exact time point when the cell was measured.

• FSC, SSC : Forward Scatter and Side Scatter, these values are measured by

two light detectors and roughly correspond to the size and granulation of the

cell.

• Fluorescent parameters : the other parameters are calculated by the Flow

Cytometer by integrating the emission-spectrum of the cell at different

wavelength-ranges (each wavelength-range corresponding to the emission spec-

trum of a particular fluorescent dye the name of which is used as the name of

the parameter)1.

An example of a measurement result is shown in Table 1.1.

The distribution of parameters can be visualized using histograms or scatter

plots (2 dimensional density plots), examples are shown in Figure 1.1 and 1.2.

Kinetic Flow Cytometry measurements are defined by having a parameter the

distribution of which varies over time. Special statistical methods were developed

for the description and statistical comparison for such measurements ([4], [6], [5]).

My aim was to develop a software that implements the method as described in [5].

1The overlap of spectra of different fluorescent dyes are compensated by the Flow Cytometer
using specific algorithms [12].

4

FSC SSC FITC PE PE-Cy7 APC APC-Cy7 Time
54528.8 64740.1 6496.4 1727.5 681.4 429.5 717.5 0.001
81142.5 44227.6 5153.4 488.8 2795.1 8.6 522.7 0.002
86443.5 45844.4 19496.7 305.3 977.3 68.4 93.2 0.003
63353.3 125472.2 8034.5 781.2 282.8 1453.7 627.3 0.003
35268.1 122954.8 5138.4 608.0 436.5 890.5 537.8 0.005

Table 1.1: An example of a Flow Cytometry measurement result. One row corre-
sponds to one cell, and each column corresponds to a parameter measured by the
Flow Cytometer. Time is shown as seconds, the other parameters are measured on
a relative scale that is proportional to the amount of fluorescent dye.

Figure 1.1: An example of the histogram of parameter APC (given as APC-A in the
bottom) in a Flow Cytometry measurement. In this measurement white blood cells
were dyed with a CD4-antibody binded to fluorescent dye APC.

Figure 1.2: An example of the scatter plot of parameters FSC and SSC in a Flow
Cytometry measurement. The darker the plot the more cells in that range are.

The software was developed in collaboration with the FACS Laboratory at De-

partment of Laboratory Medicine, Semmelweis University [22]. Potential users of

this software are researchers using a Flow Cytometer device (or FACS, Fluorescent

Activated Cell Separator, which is a Flow Cytometer with additional features).

5

Chapter 2

The Task

The task is to create a program for the analysis of Kinetic Flow Cytometry mea-

surements using the algorithm described in [5] as method “Fitting to quantiles”.

The inputs of the program are FCS files produced by a Flow Cytometer and

user choices based on intermediate analysis results. The outputs are various figures,

tables describing and comparing different characteristics of kinetic processes taking

place in the measurements.

2.1 Specification

The program should implement the following three phases:

• Reading and selecting measurement data (Section 2.1.1)

• Fitting functions (Section 2.1.2)

• Comparing measurements (Section 2.1.3)

2.1.1 Reading and selecting measurement data

2.1.1.1 Input: FCS file

The input of this phase is one ore more FCS files, either FCS 2.0 [8] or FCS 3.0 [13]

format (extension fcs).

FCS is a binary file-format which contains a HEADER segment, a TEXT seg-

ment, a DATA segment and optionally other segments.

The header contains the ASCII-encoded string ”FCS2.0” or ”FCS3.0” (6 bytes),

4 bytes of space characters (ASCII 32), then the ASCII-encoded offsets to the first

and last bytes of the next segment, then the offsets to the first and last bytes of the

next segment and so on.

6

The TEXT segment contains keyword-value pairs in ASCII format. The first

character of the TEXT segment is the delimiter character that separates keywords

from values. Then follow the first keyword, a delimiter, the value that belongs to

the first keyword, a delimiter, the second keyword and so on. Some of the keywords

are compulsory such as $PAR (number of parameters), $MODE (list or histogram

mode, list mode should be supported), $DATATYPE (how the data is stored: float,

double or integer), $BYTEORD (byte order). The names of each parameter is also

given in the text segment ($PjN keywords, where j ranges from 1 to $PAR). The $PjE

keyword specifies the logarithmic amplification in case the jth parameter is stored

logarithmized (it is a pair separated by comma, we refer only to the first element of

the pair here as PjE). The $PjR keyword specifies the theoretically highest value

of the jth parameter. Some Flow Cytometers output the compensation matrix and

the raw parameter data instead of only compensated parameter data by specifying

APPLY COMPENSATION (having value TRUE) and SPILL keywords (the value of which

is an n× n matrix by rows, elements being separated by comma).

The DATA segment contains the parameters of the first event in the format

specified in the TEXT segment, then the parameters of the second event etc. This

is essentially a table with events as rows and parameters as columns.

We refer to this table as the following set: data ∈ Dnpar, where D is either float,

double or integer according to $DATATYPE and npar is the value stored in $PAR. If

for some j, the first element of $PjE is not 0, data should be replaced by

{
�

j∈[1..npar]
f(d, j) | d ∈ data

}
where f(d, j) =

10dj∗PjE/(PjR−1) if PjE 6= 0

dj if PjE = 0

If APPLY COMPENSATION keyword has value TRUE, data should be replaced by{
�

j∈[1..npar]

(
SPILL−1 ∗ d

)
| d ∈ data

}
(d is a column vector (npar × 1-size matrix) and ∗ means matrix multiplication,

SPILL−1 is the inverse of the SPILL matrix.)

The program should support FCS 2.0 and FCS 3.0 files outputted by the FACS-

Diva Version 4.1 [15] program.

2.1.1.2 Output: gated file

The output of this phase is a gated file (extension gated).

A gated file is a text file containing the following lines (newline characters and

backslash characters are escaped by backslash):

1. the number of lines after this line in the file

7

2. the number of lines in the metadata section (6)

3. measurement date and time

4. measurement name

5. filename of the original FCS

6. email address of the researcher

7. textual description of gates

8. name of the kinetic parameter

9. number of events

10. time and kinetic parameter values of the first event separated by space (using

dot as decimal symbol)

11. time and kinetic parameter values of the second event separated by space

(using dot as decimal symbol)

12.- etc.

The program should handle the possible later growth of the metadata section.

2.1.1.3 Steps from FCS to gated

The program should allow the following:

1. Read FCS data files. Terminology: an FCS file contains a table of events each

event having the same parameters. We refer to the FCS data as data ∈ Dnpar,

where npar is the number of parameters and D is the type of numbers that

are stored in the FCS (integer, double or float).

2. Concatenation of event data contained in FCS files using a gap of arbitrary

length (given in seconds) in between by increasing the time parameter of each

event in the second file by the time parameter of the last event in the first file

plus the gap:

datanew = data1 ∪
{

�
j∈[1..npar]

f(d, j) | d ∈ data2
}

where f(d, j) =

dj if j is not the time parameter

max{ej | e ∈ data1}+ gap+ dj if j is the time parameter

8

3. View the distribution of all parameters using either scatter plot (2-dimensional

density plot, see Figure 1.2) of two arbitrarily selected parameters or histogram

of one parameter (see Figure 1.1). The user should be able to choose between

linear and logarithmic scale for arbitrary parameter.

4. Allow the selection of events (terminology: gating) graphically by using the

following methods:

• Polygon gate using scatter plot of parameters x, y:

replace data with {d | d ∈ data ∧ d insidex,y poly} where poly ∈ (D2)+

• Rectangular gate using scatter plot of parameters x, y:

replace data with {d | d ∈ data ∧ d insidex,y rect} where rect ∈ (D2)4

• Range gate using histogram plot of parameter x:

replace data with {d | d ∈ data ∧ rect1 ≤ dx ≤ rect2} where rect ∈ D2

• Inverse gate using either of the previous three:

replace data with data \ (result of one of the previous three)

d insidex,y poly means that the x and y parameters of d are inside the polygon

specified by poly. The program should allow arbitrary number of sequential

steps of gates.

5. Allow the selection of a parameter to be analyzed either as a single parameter

or as the ratio of two parameters. We call this parameter kinetic parameter.

The last step of producing the output of this phase can be formalized as follows

(t is the number of the time parameter and k (or knum, kdenom in case of

ratio) is the number of the kinetic parameter, t, k ∈ [1..npar]).

gated =

{(dt, dk) | d ∈ data} in case of a single kinetic parameter

{(dt, dknum/dkdenom) | d ∈ data} in case of ratio

6. Output a gated file as the result of the previous step.

2.1.2 Fitting functions

After some transformation of the gated data the program should fit 5 different

functions to 201 quantiles of the data in this phase. The functions have 1, 4, 4, 8,

8 parameters, respectively (note that this is a different usage of the word parameter

as in kinetic parameter). Hence, the result of this phase is 201 ∗ (1 + 4 + 4 + 8 + 8)

parameter values besides some metadata.

9

2.1.2.1 Input: gated file

The input of this phase is a gated file specified in Section 2.1.1.2.

2.1.2.2 Output: kinetics file

The output of this phase is a kinetics file (extension kinetics).

A kinetics file is a text file containing the following lines (newline characters and

backslash characters are escaped by backslash).

Header segment:

1. the number of lines after this line in the file

2. the number of lines in the metadata section (nm, at least 6, this line does not

count)

3. measurement name

4. filename of the original FCS

5. email address of the researcher

6. textual description of gates

7. name of the kinetic parameter

8. number of events

9. whether the baseline part was fixed during the fit (not compulsory)

... possibly additional metadata

Functions segment:

(nm+3). number of lines in the Functions segment of the file (nf , this line does not

count)

(nm+4). number of lines in the metadata section of the first function (at least 3)

(nm+5). name of the first function

(nm+6). CV (Cross Validation) value of the first function

(nm+7). SAD (Sum of Absolute Deviations) value of the first function

(nm+8). number of quantiles (201)

(nm+9). parameters for the first quantile of the first function separated by space

10

(nm+10). parameters for the second quantile of the first function separated by space

(nm+...). ...

(nm+210). parameters for the 201th quantile of the first function separated by space

... function data for the second, third etc. functions in the same format

Medians segment of the file:

(nm+nf+4). number of lines in the Medians segment (nd, this line does not count)

(nm+nf+5). time value and median value at the first time interval separated by

space

(nm+nf+6). time value and median value at the second time interval separated by

space

(nm+nf+...). ...

(nm+nf+4+nd). time value and median value at the last time interval separated

by space

Dot should be used as decimal separator symbol. The definition of time intervals

and medians can be found below.

The program should handle the possible later growth of the metadata section

(both for the whole file and for each function) and also the possible modification of

the number of quantiles or functions.

2.1.2.3 Steps from gated to kinetics

The program should implement the following:

1. Read the gated file which (besides some metadata) contains (time, kinetic

parameter value) pairs. We will refer to kinetic parameter value as kinetic

value to avoid confusion with parameters of functions.

2. Divide the timeframe into 100 intervals of equal length and calculate the

quantiles 1/402 + i/201, i ∈ {0, 1, 2, ..., 200} in each time interval thus cre-

ating a matrix qdata ∈ D201×ntime containing the quantile values and a vector

times ∈ Dntime containing the beginning of each time interval. If there are

intervals with no events inside, ntime can be less than 100.

3. We define the following functions:

11

(a)

constant(t; y) = y

Parameter constraint: y ≥ 0

(b)

logist+(t; y0, y2, x1,m1) =
y0 + (y2− y0)

1 + e
4∗m1∗(−t+x1)

y2−y0

Parameter constraints: y0, y2, x1,m1 ≥ 0 and y0 < y2

(c)

logist−(t; y0, y2, x1,m1) =
y0 + (y2− y0)

1 + e
4∗m1∗(−t+x1)

y2−y0

Parameter constraints: y0, y2, x1 ≥ 0, m1 ≤ 0 and y2 < y0

(d)

dlogist+(t; y0, y1, y2, x1, xd0, xd2,m0,m2) =

=


y0 + y1−y0

1+(x1−t
xd0)

4∗xd0∗m0
y1−y0

if t < x1

y2 + y1−y2

1+(t−x1
xd2)

4∗xd2∗m2
y2−y1

if t ≥ x1

Parameter constraints: y0, y1, y2,m0, x1, xd0, xd2 ≥ 0, m2 ≤ 0,

xd0 ≤ x1, y1 > y0, y1 > y2

(e)

dlogist−(t; y0, y1, y2, x1, xd0, xd2,m0,m2) =

=


y0 + y1−y0

1+(x1−t
xd0)

4∗xd0∗m0
y1−y0

if t < x1

y2 + y1−y2

1+(t−x1
xd2)

4∗xd2∗m2
y2−y1

if t ≥ x1

Parameter constraints: y0, y1, y2,m2, x1, xd0, xd2 ≥ 0, m0 ≤ 0,

xd0 ≤ x1, y1 < y0, y1 < y2

For each of the five functions implement the following:

(a) Fit the function to each quantile minimizing the Sum of Absolute Devi-

ations (SAD). Store the parameters of the function. Calculate an overall

SAD value by adding the SAD values of all 201 quantiles.

(b) Fit the function to quantiles 0.25, 0.5 and 0.75 minimizing SAD using

10-fold cross validation [10]. Calculate an overall SAD value by adding

the 10 SAD values coming from 10-fold cross validation for each of the 3

12

quantiles, thus the overall CV value should come from 10 ∗ 3 = 30 SAD

values. We refer to this overall SAD value as CV value (Cross Validation).

4. Output a kinetics file as a result of the previous step.

2.1.3 Comparing measurements

The input of this phase are kinetics files (format specified in Section 2.1.2.2). The

program should allow the analysis of the data contained in the kinetics files, specif-

ically:

1. Display the summary of all opened kinetics files: display the CV, SAD values

and parameters (using “median [quartiles]” format) for each function. Graph-

ically distinguish the best function (out of 5) fitted to the measurement ac-

cording to the CV value and allow the selection of a current function. Every

analytical step described below uses the current function.

2. For each kinetics file, plot the median values and the current function fitted

to the median values (0.5-quantile, 101th function out of 201).

3. Allow standardization of y values so that the median function starts at value 1

(function(−∞) = 1). This means stretching all functions and median values

given in the median section of the kinetics file in direction y by multiplying

them with the same number that stretches the median function so that it

starts at value 1.

4. Allow putting the kinetics files into arbitrary number of groups by combining

the corresponding parameter values in the different kinetics files belonging to

the same group.

5. Allow the display of the parameter values in a group by plotting a histogram

or a boxplot.

6. Allow the user to specify that she is only interested in the parameter values

of the function fitted to the median values (0.5-quantile, 101th function out of

201). We refer to this choice as “use only median functions”. Otherwise, use

all the 201 values for each parameter.

7. Allow the comparison of one parameter between the groups:

• if “use only median functions” is selected, perform a Kruskal-Wallis rank-

sum test [3] (which is equivalent to a Mann-Whitney U-test or two-sample

Wilcoxon test for two groups). Provide the chi-squared and p-values.

13

• otherwise, perform a Probability Binning (PB) test [11]. Provide the t

and p-values.

8. Allow pairing kinetics files:

• if “use only median functions” is selected, the corresponding parameter of

the selected pair should be substracted from the parameter of the original

kinetics file (for each parameter). The result of this substraction should

be the new parameter value.

• otherwise, a PB comparison should be performed between the correspond-

ing parameter of the selected pair (201 values) and the parameter of the

original kinetics file (also 201 values). The t value of the PB comparison

should be the new parameter value (which is a single value now).

9. Allow the comparison of paired data by Kruskal Wallis rank-sum test [3].

10. Allow exporting every result, table, image produced by the previous analysis

steps in text, Excel-readable and PNG format.

2.2 Analysis of Requirements

2.2.1 Communication with other programs

Flow cytometry uses the FCS standard ([8], [13]) for storage and communication of

measurement results. The program should be able to read FCS files produced by

FACSDiva Version 4.1 program [15] (which outputs FCS files which are not fully

standards-compliant). It should be easily extendable with newer versions of FCS

or FCS files produced by other Flow Cytometry programmes. There is no state of

art standard for storing gated FCS files or analysis results, however FCS 3.1 [16]

aims to be a step towards this. The program should implement it’s own simple

text-based format for storing gated files (gating results) and kinetics files (analysis

results). For the easier usage and understanding of these own formats, we specify

them formally (2.1.1.2, 2.1.2.2) and the implementation should also provide R [27]

functions reading and writing these formats. The tables in these text-based formats

are also easily readable by Excel for further analyis. The program should allow

exporting the numerical analysis results in two formats:

• Excel-readable text format (cells separated by tab characters).

• R code which can be executed in an R environment [27] thus copying all results

into R variables.

14

The graphical analysis results (plots) should be exportable in the widespread PNG

(Portable Network Graphics) format [26] which provides lossless image compression.

2.2.2 Runtime Environment

Out of the three phases of the specification the first and third requires user interac-

tion (Sections 2.1.1 and 2.1.3). The program(s) implementing these phases should

run on several platforms without modification, including Ubuntu 2010.04 [30], Win-

dows XP SP3, Windows Vista, Windows 7 [31] with Java SE 6 Update 31 [20] in-

stalled. The program implementing the second phase should run on Ubuntu 2010.04

[30].

This separation is possible by having a well-defined input and output format of

the second phase. The communication can be done over a computer network, in this

case the computer running the first and third phase should have internet access.

Phase Runtime environment

1. Reading and selecting measurement data GUI-based, Java SE

2. Fitting functions no GUI, Ubuntu 10.04

3. Comparing measurements GUI-based, Java SE

Figure 2.1: Runtime environment requirements of different phases.

2.2.3 Requirements for goodness of the program

2.2.3.1 Speed

In the first and third phase, the program should react immediately to user interaction

on a recent machine such an Intel Core Duo 1.67 GHz with 2 GB of RAM (during

the execution of longer tasks the program should provide a progress bar), the second

phase should in average last no longer than 10 hours on an Intel Core i7 2.66 GHz

machine for one gated file input.

2.2.3.2 Accessibility

The program should provide an intuitive graphical user interface that is similar to

well-known Flow Cytometry analysis software such as FlowJo [19] or FACSDiva [15].

Only one instance of the program should be allowed to run at a certain time and

it should be able to open several files using a tab-based interface for example. The

program should have a thorough and accessible User’s Guide available from a Help

menu. Updating the program to a newer version should be automatic without any

15

user intervention. Any settings of the program should be easily modifiable using the

graphical user interface.

2.2.3.3 Maintanance and failure handling

The installation and update of the program implementing the first and third phase

should work without any user intervention provided the user has the installation

prerequisites on her computer. The user should be able to install the software without

having root access to her computer.

A power loss during phase two should not result in data loss, and the computa-

tions should restart automatically without any user intervention. The implementa-

tion of phase two should be designed for moderate usage by a couple of laboratories

and should handle a load of 20 analyses pro day.

2.2.3.4 Security

The type of scientific data handled by the software is not secret and is usually made

publicly available so it is not necessary to secure the communication between the

second and first/third phases. Data size limits should be used to prevent overload

attacks.

16

Chapter 3

User Documentation

The task specified in the previous chapter is solved by two programs, FacsKin and

Caflux. FacsKin solves the first and third phases of the specification while Caflux

solves the second phase.

3.1 Program Structure

FacsKin is a computer program that enables the mathematical description and sta-

tistical comparison of Flow Cytometry acquired kinetic measurements (such as cal-

cium flux measurements). The output of a Flow Cytometry measurement is an FCS

file containing FSC, SSC, fluorescent and time parameter values for each cell in

the specimen. Kinetic measurements are special because the distribution of at least

one parameter (the kinetic parameter) changes as time passes. FacsKin is able to

describe the kinetic change that occurs during the measurement by fitting different

functions to the kinetic parameter values. By selecting a common function that

describes every measurement well, FacsKin is able to compare different groups of

measurements based on parameters of the selected function. The available func-

tions and thus the kinetic changes that FacsKin is able to describe are the following

(Figure 3.1):

• constant: the value of the kinetic parameter is constant during the measure-

ment timeframe

• logist+: the kinetic parameter starts at a given value, increases during the

measurement timeframe and reaches a given value

• logist-: same as logist+, but the kinetic parameter value is decreasing during

the measurement timeframe

• dlogist+: the kinetic parameter starts at a given value, increases, reaches

17

a maximum value and then decreases and reaches a given value during the

measurement timeframe

• dlogist-: same as dlogist+, but the kinetic parameter value first decreases,

reaches a minimum and then increases

Figure 3.1: Supported functions

The name FacsKin comes from the acronym FACS (Fluorescent Activated Cell

Separator) and Kinetics.

The analysis with FacsKin requires the following steps (Figure 3.2):

3.2.1 Acquiring measurement data

3.2.2 Starting FacsKin

3.2.3 Opening and gating FCS files

3.2.4 Uploading gated data

3.2.5 Receiving .kinetics file as email attachment

3.2.6 Opening different .kinetics files and selecting a common function (a .kinetics

file contains the results of fitting all 5 previously described functions to the

uploaded gated data)

3.2.7 Creating groups and comparing parameters of the selected function in different

groups

The detailed description of the these steps follows. The usage of the server-side

part of the software (called Caflux) is described in Section 3.4.

18

Figure 3.2: Steps of data analysis with FacsKin

3.2 FacsKin step-by-step User’s Guide

The up to date version of this User’s Guide is also available through the Help /

User’s Guide menu item in FacsKin. This section describes the usage of FacsKin

Version 0.5.13.

3.2.1 Acquiring measurement data

FacsKin is only able to analyze those measurements that were acquired by a Flow

Cytometer in compliance with these criteria:

1. All requirements specified for the particular dyes (such as staining time, pro-

19

tecting samples from light, vortexing the sample before measurement etc.)

should be carefully followed.

2. Before starting recording data check the stream and flow rate so that the

event count per second be stable and the control dot-plots look as expected.

The minimum flow rate that could be analyzed with FacsKin is 200 events/s

but optimally the flow rate should be around 1000 events/s.

3. IMPORTANT: before stimulating the specimen (eg. PHA activation of lym-

phocytes) record a baseline of at least 30 seconds length. Optimally the length

of the baseline is 10% of the length of the whole measurement. Also make sure

that the kinetic parameter of interest reaches a constant value before the end

of the recording (for calcium flux measurements in activated lymphocytes this

usually takes at least 15 minutes). This second constant time range should be

optimally 10% of the whole measurement as well.

4. In case you need to pause sample acquisition and data recording for the stim-

ulation of your sample after recording a baseline (eg. because you are using a

Flow Cytometer in which the sample is not accessible during the measurement)

the time taken for the stimulation of the specimen should be recorded either

by the Flow Cytometer (creating an FCS with a gap between the baseline

and the stimulated measurement) or the researcher (by measuring the time

with a clock and recording the baseline and the stimulated measurements into

separate FCS files - you will be asked for the length of this time when opening

the two FCS files with FacsKin). This time should be as short as possible.

5. The sample should contain enough cells so that the desired timeframe could

be recorded.

6. During the measurement the flow rate should be constant (size of the flow rate

as described earlier) and the control dot-plots should be monitored at all time.

7. If possible use FCS 3.0 format when exporting data.

3.2.2 Starting FacsKin

Prerequisity for running FacsKin is Java SE 6 Update 31 [20] or later (available on

Ubuntu 10.04 [30], Windows XP, Windows 7 [31], Mac OS X Tiger [14] etc.) and a

computer with at least 2 GB of RAM.

FacsKin can be launched through Java Web Start from the http://www.

facskin.com website or downloaded as a ZIP bundle and executed from the com-

puter directly.

20

http://www.facskin.com
http://www.facskin.com

3.2.2.1 Launch with Java Web Start

1. To start FacsKin, click the link on page http://www.facskin.com/node/5.

2. Wait until FacsKin is downloaded automatically to your computer (Figure

3.3).

Figure 3.3: Downloading FacsKin

3. Allow FacsKin to run with full privileges on your computer. Check “Always

trust content from this publisher” and click “Run” (Figure 3.4).

4. (Optionally) ask your firewall to unblock FacsKin (which is running in the

Java platform) so that it is allowed to upload your measurement data to the

server when you click the Upload button later on (Figure 3.5)

5. FacsKin is running, you can open a .fcs or a .kinetics file (Figure 3.6).

3.2.2.2 Launch from the ZIP bundle

If you have trouble launching FacsKin with Java Web Start as described above, you

can download and start FacsKin directly using the following method:

1. Download FacsKin from http://download.facskin.com/FacsKin.zip and

open the downloaded zip file (Figure 3.7).

2. Copy the FacsKin folder from the zip file to your Desktop (or to any folder on

your computer).

21

http://www.facskin.com/node/5
http://download.facskin.com/FacsKin.zip

Figure 3.4: Allowing FacsKin to run with full privileges

Figure 3.5: Ask the firewall to unblock FacsKin

3. To start the program click FacsKin (MS-DOS Batch File). (Figure 3.8)

4. Ask your firewall to Unblock FacsKin (which is running in the Java platform)

so that it is allowed to upload your measurement data to the server when you

click the Upload button later on (Figure 3.5).

Note for Linux users: to launch FacsKin with the FacsKin.sh provided, you

should chmod +x it and adapt the path of FacsKin in the file and then move it to a

folder which is in your $PATH (such as ~/bin).

22

Figure 3.6: Opening a file with FacsKin

Figure 3.7: Download FacsKin

3.2.3 Opening and gating FCS files

When starting FacsKin, the Open file panel appears automatically but you can reach

this panel from the File/Open menu item later. From the Open panel, select the FCS

file you want to load and click Open (you can select multiple files at once, they will

be opened in separate tabs).

Concatenating FCS files: If you have a separate FCS file for the baseline

measurement and another one for the measurement after stimulation you should

open the first measurement and then append the second one by the File/Append

FCS menu item. A pop-up window will ask you about the size of gap (in seconds)

that should be inserted between the two measurements. This value should be as

close to the real value as possible because it can influence the analysis. The default

23

Figure 3.8: Start FacsKin

Figure 3.9: Opening an FCS file

value is 30 seconds.1

After opening an FCS file a tab will appear labeled with the name of the FCS

file. In the middle you will see the scatter plot of the selected channels (by default

FSC (forward scatter) on the horizontal and SSC (side scatter) on the vertical axis).

You can select the channel on the corresponding axis by clicking on the drop down

menu near the corresponding axis. You can display the selected channel on a loga-

rithmic scale by clicking the Log checkbox. To view the histogram of the channel

selected on the horizontal axis, select Histogram from the drop down menu for the

vertical axis. On the right side you can see some information about the measurement

(filename, FCS version, date of measurement and count of events).

Gating:

• Scatter plot gate: to pick out events based on two parameters, select the

1You can check whether the measurement was appended correctly by selecting the Time pa-
rameter on the horizontal axis. You should notice a gap of the same size you selected.

24

desired parameters on the horizontal and vertical axes, and select the vertices

of the polygon by clicking on the scatter plot with the left mouse button. The

semi-finished polygon is drawn with red color and if you finished the selection

it is drawn with green color. To restart the selection of the polygon click on the

scatter plot with the right mouse button. You can select a rectangle instead

of a polygon by selecting Rectangular gate on the left.2 (Figure 3.10)

Figure 3.10: Creating a scatter plot gate

• Histogram gate: to pick out events based on one parameter, select Histogram

on the vertical axis and select the area on the histogram plot by clicking the

left mouse button and dragging until selection end. The red rectangle shows

the currently selected range. (3.11)

Figure 3.11: Creating a histogram gate

By clicking the Apply Gate button you can apply the selected gate. If you want

to pick out the events outside the selected area, select the Inverse gate checkbox

2It is especially helpful when gating based on the time parameter. This is sometimes important
when there was some disturbance during a time point of the measurement. In this case the time
range where the disturbance occurred should be gated out with inverse gate, see below.

25

before clicking Apply Gate. You can follow the change in the number of events on

the right side of the window.

Currently you cannot cancel gates individually but you can restart gating by

clicking the Clear all gates button.

To view the change in the value of the measured kinetic parameter over

time, select the time channel on the horizontal axis, select the channel for the kinetic

parameter on the vertical axis and click the Show medians checkbox (Figure 3.12).

The green curve shows how the median values change over time. From this plot you

can get an impression about the type of kinetic response the measurement shows. If

the kinetic response shown by this plot can’t be described by the available functions

(eg. the value of the measured kinetic parameter first increases, then decreases, then

increases again - out of the 5 functions available none can describe the last increasing

part) you should consider creating a gate based on the time parameter selecting only

a region were the change of the measured kinetic value could be described by one of

the functions.

Figure 3.12: Viewing the change of the kinetic parameter over time

When you gated the desired cell population finish gating by clicking the Done

gating button.

3.2.4 Uploading gated data

The analysis of the gated data is performed on the server hosted by Semmelweis

University, Budapest, Hungary. That’s why you have to upload the data to the

server. You can do this by the following steps (Figure 3.12):

1. Select the measured kinetic parameter. If you have a channel for that pa-

rameter you should choose the appropriate channel in the left drop down menu

under the Choose parameter ratio to be analyzed against time label and leave

the value 1.0 in the right drop down menu. If you want to analyze the ratio of

26

two parameters (eg. Fluo-3/Fura Red corresponding to FITC/PerCP), choose

the appropriate parameters in the nominator (left) and denominator (right)

checkbox.

2. Choose a name for the analysis. You will receive the analysis results (a .ki-

netics file) with the name you have chosen here.

3. Give your email address. The .kinetics file containing the analysis results will

be sent to this email address.

4. Click the Upload gated data button and wait till the data uploads. On success,

you should be presented with a Data uploaded successfully. You will receive...

infobox.

Figure 3.13: Uploading gated data

Troubleshoot: If you receive a question from your firewall whether it should

allow FacsKin to have network access, please give FacsKin access to be able to

upload data. If you receive a ”Network Error” message from Facskin after clicking

the Upload gated data button, please check your firewall configuration and allow

FacsKin to have network access.

If you want to save the gated data on your computer you can do this by clicking

the Save gated data button. This way you will get the exact same file as the one you

uploaded to the server. It is a gzip-compressed file containing the gated data in text

format. Currently this file cannot be opened by FacsKin.3

3.2.5 Receiving .kinetics file as email attachment

Some hours after uploading, the server sends you a .kinetics file containing the

analysis result of your uploaded measurement (gated data). A .kinetics file contains

3The upload to the server is not secured and we cannot guarantee that the uploaded data won’t
be accessed by a third party.

27

the results of fitting all 5 previously described functions to one gated measurement.

The name of the .kinetics file is the same you specified in FacsKin before uploading

the gated data.

3.2.6 Opening different .kinetics files and selecting a com-

mon function

You can open .kinetics files in FacsKin just as you did it with FCS files. A tab named

Kinetics will be opened where you see the following (Figure 3.14):

• (green) on top you see a plot showing the median points of the measurement

and the currently selected function fitted to these median points. The median

points are the medians of the selected kinetic fluorescent parameter values in

the uploaded gated cell population (exactly the same points as the green lines

shown in Figure 3.12).

• on the bottom you see a table where each row corresponds to an opened

.kinetics file.

• (red) to choose between functions, click on the column header of the gray-

backgrounded columns. To select the constant function, click constant etc.

Note how the plot changes while selecting different functions.

• (blue) note how the last columns of the table change when selecting different

functions: each function has a different set of parameters.

• while moving the mouse over the plot you can track the coordinates with

the cursor. When selecting Use Only Median Functionsn only the parameters

of the function fitted to the median points appear in the table. Try to match

the parameters in the table with the corresponding coordinates seen on the

plot (eg. maximum value parameter in the table should have the same value

as the second coordinate of the highest value of the function as seen on the

plot).

• (purple) by default the kinetic parameter is standardized so at time point 0

the value of the median point is 1 (the vertical axis shows relative parameter

values). If you deselect Preferences/Standardization, the function will start at

the real measured value (note how the values on the vertical axis change in

the plot - the vertical axis shows absolute parameter values). Standardization

can help when you wan’t to compare measurements that were measured under

different conditions / different Flow Cytometer machines etc.

28

• to open more .kinetics files click File/Open. You can select more .kinetics

files at once.

• to save the currently opened .kinetics files in one zip file so that you can

easily open them next time at once, click File/Save as. Next time just open

the zip file with FacsKin and each .kinetics file contained in that zip file will

be loaded.

• (light blue) to remove a .kinetics file right click the row of the .kinetics file

in the first column (Filename) and select Remove row

• (light blue) to get information about a .kinetics file such as measurement

time, measurement name right click the row of the .kinetics file in the first

column (Filename) and select Get info

Figure 3.14: FacsKin after opening one .kinetics file

3.2.6.1 Detailed description of the functions

Each function has an own set of parameters. These parameters describe the function

entirely: eg. if you know all the 8 individual parameters of a dlogist+ function you

will be able draw the function. The available functions and the parameters describing

them are the following:

• each function has an AUC parameter:

– AUC: the area under curve from time point 0 to by default 600 s (this

can be changed in Preferences/Set Maximum Time for AUC menu item -

set it to length of the measurement). Eg. if the vertical axis is calibrated

for intracellular Calcium concentration (mmol/l), the AUC shows the

amount of time all the Calcium atoms spend in one liter of cell volume

during the measurement timeframe.

29

• constant: the function is a horizontal line having the same value all the time.

Parameter:

– constant value

• logist+: an S-shape function that starts at a given value (starting value)

increases and reaches a higher given value (ending value). (Figure 3.15)

Parameters:

– starting value: the limit of the function at −∞ (minus infinity). It is

not necessarily the value at time point 0. If the function begins with a

steep, the starting value is lower than the value at time point 0. This is

one reason why it is necessary to record a baseline at the beginning of

the measurement

– ending value: the limit of the function at +∞ (positive infinity). Not

necessarily the value of the function at the end of the measurement

– time to reach 50% value: the time point when the function reaches

the 50% value. The 50% value is the average of the starting value and

the ending value (unit: s)

– slope at 50% value: the slope of the function at the 50% value. This

is always positive (unit: int/s where int is the unit of the vertical axis.

Meaning: how much does the intensity change during 1 second)

Figure 3.15: Parameters of logist+ function

• logist-: an S-shape function that starts at a given value (starting value) de-

creases and reaches a lower given value (ending value). (Figure 3.16)

Parameters:

– starting value: the limit of the function at −∞ (minus infinity). It is

not necessarily the value at time point 0. If the function begins with a

steep, the starting value is higher than the value at time point 0. This is

one reason why it is necessary to record a baseline at the beginning of

the measurement

30

– ending value: the limit of the function at +∞ (positive infinity). Not

necessarily the value of the function at the end of the measurement

– time to reach 50% value: the time point when the function reaches

the 50% value. The 50% value is the average of the starting value and

the ending value (unit: s)

– slope at 50% value: the slope of the function at the 50% value. This

is always negative (unit: int/s where int is the unit of the vertical axis.

Meaning: how much does the intensity change during 1 second)

Figure 3.16: Parameters of logist- function

• dlogist+: a function that starts at a given value, has an increasing phase,

reaches a maximum, has a decreasing phase and reaches a given ending value.

(Figure 3.17)

Parameters:

– starting value: the limit of the function at −∞ (minus infinity). It is

not necessarily the value at time point 0. If the function begins with a

steep, the starting value is lower than the value at time point 0. This is

one reason why it is necessary to record a baseline at the beginning of

the measurement

– maximum value: the maximum of the function. It is possible that the

maximum point is not in the measurement timeframe (usually meaning

that the selected function doesn’t fit the measurement well)

– ending value: the limit of the function at +∞ (positive infinity). Not

necessarily the value of the function at the end of the measurement

– time to reach maximum value: the time point when the function

reaches the maximum value (uint: s)

– time from the first 50% value to maximum: the distance between

the time point where the function reaches the first 50% value and where

the function reaches the maximum. The first 50% value is the average of

the starting value and the maximum (unit: s)

31

– slope at first 50% value: the slope of the function at the first 50%

value. It is always positive (unit: int/s where int is the unit of the vertical

axis. Meaning: how much does the intensity change during 1 second)

– time from maximum to the second 50% value: the distance between

the time point where the function reaches the maximum and where the

function reaches the second 50% value. The second 50% value is the

average of the maximum and the ending value (unit: s)

– slope at second 50% value: the slope of the function at the second 50%

value. It is always negative (unit: int/s where int is the unit of the vertical

axis. Meaning: how much does the intensity change during 1 second)

Figure 3.17: Parameters of dlogist+ function

• dlogist-: a function that starts at a given value, has a decreasing phase, reaches

a minimum, has an increasing phase and reaches a given ending value. (Figure

3.18)

Parameters:

– starting value: the limit of the function at −∞ (minus infinity). It is

not necessarily the value at time point 0. If the function begins with a

steep, the starting value is higher than the value at time point 0. This is

one reason why it is necessary to record a baseline at the beginning of

the measurement

– minimum value: the minimum of the function. It is possible that the

minimum point is not in the measurement timeframe (usually meaning

that the selected function doesn’t fit the measurement well)

– ending value: the limit of the function at +∞ (positive infinity). Not

necessarily the value of the function at the end of the measurement

– time to reach minimum value: the time point when the function

reaches the minimum value (uint: s)

32

– time from the first 50% value to minimum: the distance between

the time point where the function reaches the first 50% value and where

the function reaches the minimum. The first 50% value is the average of

the starting value and the minimum (unit: s)

– slope at first 50% value: the slope of the function at the first 50% value.

It is always negative (unit: int/s where int is the unit of the vertical axis.

Meaning: how much does the intensity change during 1 second)

– time from maximum to the second 50% value: the distance between

the time point where the function reaches the minimum and where the

function reaches the second 50% value. The second 50% value is the

average of the minimum and the ending value (unit: s)

– slope at second 50% value: the slope of the function at the second 50%

value. It is always positive (unit: int/s where int is the unit of the vertical

axis. Meaning: how much does the intensity change during 1 second)

Figure 3.18: Parameters of dlogist- function

How to choose the best function (Figure 3.19): to compare measurements

you have to select a common function that describes every .kinetics file that you

opened. Most of the time it is obvious from the type of measurement which function

to choose but we give some criteria that should be met to avoid making mistakes:

• select the function that describes the kinetic response of the measurement

best: the plot shows you how well the fitted function follows the median values.

Eg. if the median values are increasing with time during the measurement you

should consider selecting the logist+ function.

• select the function with the lowest CV value. CV means cross validation

values. The lower the CV value the closer the function to the median values.

The CV values are shown for each function in the column corresponding to the

function. The lowest CV-value for each .kinetics file is written with red color.

33

A small difference (5% difference should be considered small) in CV values of

two functions means that the two functions are almost equally good in this

aspect and you should make a choice between them based on the other criteria.

• if there are still more functions to consider you should select the simpler

function: the function that is more to the left in the table and with fewer

parameters. If you select a too complex function for a simple measurement

kinetic some of your parameters will be without meaning. Eg. if you select the

dlogist+ function for a measurement with logist+ kinetic the parameters that

describe the decreasing phase of the dlogist+ function (time from maximum

to second 50% value, slope at second 50% value, ending value) will have no bi-

ological meaning and will have random values with big error. The parameters

outside the measurement timeframe are printed with bright color and suggest

that the selected function is too complex for the measurement. Another rea-

son for having bright colored parameters can be that you haven’t recorded a

baseline before starting the stimulation and thus the starting value and related

parameters will have a value outside the range of the median values. This is

why you should always record a baseline.

• if you opened multiple .kinetics files you should select the best common

function that describes all measurements. If there are some measurements

that don’t follow the selected function (eg. don’t have a decreasing phase

while most of the measurements have an increasing and a decreasing phase)

be prepared that some of the parameters (in the case of our example the

parameters describing the decreasing phase) won’t have a biological meaning.

Another solution to this problem would be to gate every FCS and upload them

for analysis again so that the each uploaded dataset only contains only the

events from the same phase (only from the increasing phase in our example).

Each function is fitted 201 times to different quantiles of the kinetic values so as

to enable the description of the whole data range of the measurement (Figure 3.20).

That’s why every parameter in the table is given as a parameter distribution

(median [quartiles] values). You can think of these parameter distributions in a

similar way as of the distributions of directly measured parameters like FSC, SSC

and fluorescent parameters: each event in the measurement has an FSC parameter

and you are allowed to view the FSC-distribution of a gated set of events. For kinetic

parameters like starting value, maximum etc. we don’t know the individual values

for each event but we are able to view and compare (see below) the distributions.

If you select Use Only Median Functions only the parameters of the median

function are shown in table and only these are used for further comparison (so eg.

34

Figure 3.19: Function selection when the measurements have different kinetics. Dl-
ogist+ is selected on the left side and logist+ on the right side. In most of the
measurements it makes no difference which function is being used but in the 4th
(green color) and 6th (blue) files there is real difference in the CV values and in the
plot as well. In this case it is possibly wise to use the dlogist+ function even if the
parameters describing the decreasing phase will have no real meaning for the other
measurements (1st, 2nd, 3rd and 5th).

from one measurement you will only get one maximum parameter value instead of

a whole distribution for the maximum parameter).

3.2.7 Creating groups and comparing parameters of the se-

lected function in different groups

FacsKin allows you to compare measurements based on:

• whole parameter distribution for each parameter for each measurement (Use

Only Median Functions deselected) or

• just the parameters of the median functions - one value for each parameter for

each measurement (Use Only Median Functions selected)

The latter method does not take into account the whole range of the measured

values, only the middle (median) of the measurement but it allows us to use tradi-

tional nonparametric statistical methods for comparison.

Creating groups: in the table, by clicking on the drop down menu in a row of

a .kinetics file you can assign a group to that .kinetics file. To create a new group

select (new) from the drop down menu and give a name to the new group. Each

35

Figure 3.20: The distribution of a parameter derives from fitting a function 201
times to the same measurement. Plot of a calcium flux measurement (black dots),
the fitted dlogist+ functions (red) and their parameters: maximum value (green),
time to reach maximum value (blue), time point of the first 50% value (yellow), time
point of the second 50% value (gray).

newly opened .kinetics file will be given the group of the .kinetics file in the last row.

To view the parameter values aggregated by groups click the Group Data button.

The resulting table shows one row per group and the parameter distributions are

summed from the .kinetics files that are members of that group. You can create

arbitrary number of groups. The number of the parameter values in each group

is given in column size. If Use Only Median Functions is selected the size of each

group is the number of .kinetics files in that group. Otherwise the size is 201 times

the number of .kinetics files in the group since the distribution of each parameter

is given as 201 values. A color is assigned to each group and all the functions and

median points in the plot that correspond to a group are drawn with the same color.

Comparison: to compare the distribution of a given parameter between different

groups select the column of the parameter by clicking the column and click the

Compare button.

• when Use Only Median Functions is deselected, a new tab labeled Compar-

ison (by groups) is opened (Figure 3.23). This tab contains the box plot or

histogram of the parameter distribution in each group. You can choose be-

tween box plot and histogram plot by selecting the corresponding checkbox

36

Figure 3.21: Opening several .kinetics files and creating two groups: 5 and 15. The
selected function is dlogist+.

under the plot. The compared parameter is printed on the left top of the

plot. Each group is colored with the same color as in the Kinetics tab. On

the right there is a table containing values of the statistical comparison. Each

row corresponds to one group. The T(chi) values of a probability binning

comparison (see [11]), the corresponding p-values and the overlap of the

middle 50% of the distributions are shown in the table for each row. These

values are calculated against the control group specified in the right bottom

corner in the drop down menu Control group. By default the control group is

the combination of all groups but you can select one of the groups as well as

control. You can change the bin count for the probability binning comparison

by setting Bin count and clicking Set but usually the default bin count is

sufficient. The bigger the T(chi) value the more the distribution differs from

the control distribution. The value that holds a biologically relevant difference

should be determined individually for each type of measurement. The same

is true for the p-value and the overlap. The lower the overlap the bigger the

difference between the examined and control distribution.

• when Use Only Median Functions is selected, a new tab labeled Median com-

parison (by groups) is opened (Figure 3.24). This tab contains the results of a

Kruskall-Wallis rank-sum test comparing the parameter values in the se-

lected groups. In the case of two groups this test is equivalent to the Wilcoxon

rank-sum test (Mann-Whitney U-test). The chi sqaure value, the p-value and

the degrees of freedom is given as well as some descriptive statistical parame-

37

Figure 3.22: Grouping data and selecting the Maximum value parameter for com-
parison.

Figure 3.23: Comparing the maximum parameter in two groups.

ters for each group. In this case only the median range of each measurement

is compared so the comparison doesn’t take into account the whole range of

the measurement data.

• when clicking Compare without grouping data the box plot and comparison

results for each individual .kinetics file will be shown.

3.2.7.1 Exporting comparison data

• by right clicking the plots in the Kinetics and Comparison tabs you are able

to export the image as a PNG file

• by right clicking the table in the Kinetics or Comparison panel you can copy

the contents of the table to the clipboard (Copy table contents). You can paste

the table directly into a spreadsheet program such as Excel.

• by right clicking the column of a parameter in the Kinetics tab you can copy

38

Figure 3.24: Comparing the maximum parameter in two groups using only values
from the median functions.

the distributions of the selected parameter in each group/.kinetics file to the

clipboard (Copy parameter data). You can paste these values directly into a

spreadsheet program such as Excel.

• by right clicking the name of a group/.kinetics file (first column in the table)

in the Kinetics tab you can copy the distributions for every parameter to the

clipboard (Copy parameter data). You can paste these values directly into a

spreadsheet program such as Excel.

• by right clicking the table in the Kinetics tab you can export all data contained

in the .kinetics files opened to the clipboard and you can paste it as R code into

the R statistical programming environment (http://www.r-project.org) for

further statistical analysis. You can do this in the Median comparison (by

groups) panel as well by selecting the text under #R code for comparison and

clicking Ctrl-C.

3.2.7.2 Pairing measurements

If you have logically paired measurements, such as a control and a test measurement

for each sample and you would like to test whether the difference between the control

and the test measurement differs among different groups of measurements you can

use the Pair Data feature:

• For each test measurement select the corresponding control measurement from

the drop-down menu in column Pair (Figure 3.25).

• Select the appropriate groups in the Group column.

• Click the Pair Data button. Depending on whether you selected Use Only

Median Functions, the result is the following:

39

http://www.r-project.org

Figure 3.25: Selecting pairs for each test measurement.

– If Use Only Median Functions was not selected, a probability binning

comparison is performed between each test measurement and it’s cor-

responding control and the T(chi) values are given in the table (Figure

3.26).

– If Use Only Median Functions was selected, the parameter of the median

function of the control measurement is substracted from that of the test

measurement for each corresponding parameter and for each measure-

ment.

Figure 3.26: Measurement data after pairing. In this case (not selecting Use Only
Median Functions) the probability binning comparison results between the control
and the test measurements are shown.

40

• Click the Group Data button. This groups the values calculated in the previous

step as specified in the Group column (Figure 3.27)

Figure 3.27: Grouping paired comparison data. The parameter Time to reach max-
imum is selected for comparison.

• You can compare a parameter among groups with Kruskal-Wallis test by se-

lecting the column corresponding to the parameter and clicking the Compare

button.

3.3 Maintenance of FacsKin

The installation of FacsKin is automatic if started with Java Web Start. Upgrades

to newer versions will be applied automatically. Before starting FacsKin, Java Web

Start checks whether there is a newer version and if there is, it downloads the new

version of the software and starts it. To uninstall FacsKin, launch the Java Configu-

ration tool (Windows: Start menu / Settings / Control Panel / Java, “jcontrol” tool

on Linux) and in the General tab, under the Temporary Internet Files title click the

View button, select Applications from the top-left drop-down menu, select FacsKin

from the list and press the delete button (or click the red X button on the top). An

alternative way of uninstalling FacsKin on Linux is deleting the .java folder in your

home directory. Note that this also uninstalls all other Java Web Start applications

and clears all Java settings on your system.

If FacsKin was installed using the zip bundle method (Section 3.2.2, Sub-

section “Launch from the ZIP bundle”), it does not detect new versions au-

tomatically. To check whether a new version is available, look at the top-left

corner of the website http://www.facskin.com and compare the version given

41

http://www.facskin.com

there with the one mentioned in the About Box (Help / About). The newest

version of FacsKin is always available as a ZIP bundle on the following URL:

http://download.facskin.com/FacsKin.zip. To uninstall FacsKin installed by

this method simply delete the containing folder.

The user data of FacsKin on Linux is stored in ~/.FacsKin, on Windows it is

stored in the Application Data folder in the user’s home directory. The size and

position of the FacsKin window is stored here. When uninstalling FacsKin, this data

will remain on the computer, but you can safely delete it any time.

3.4 Caflux User’s Guide

The server side software which implements phase two (Section 2.1.2) of the speci-

fication is called Caflux. (The name comes from Calcium Flux, which is a typical

kinetic flow cytometry measurement.) This software contains an R script that reads

a gated file and generates a kinetics file and wrapper bash scripts which handle the

communication and storage of data. The installation and maintenance is not au-

tomatized, in order to make the administrator of Caflux more conscious about the

structure of the software and help him correct arising problems.

3.4.1 Installation

Installation prerequisities:

• Computer: it is recommended to install Caflux on a computer with a pro-

cessor equivalent to or faster than an Intel Core i7 2.66 GHz (4 cores), having

2 GB of RAM and 1 TB of hard disk space. Caflux runs on machines with

much lower specification but to provide reasonable analysis times (in average

less than 10 hours for one gated data file), it is recommended to run it on a

powerful machine. Ideally this should be a dedicated computer for analysis.

• Operating System: a recent Linux distribution is required to run Caflux

such as Ubuntu 10.04 [30]. It is recommended to install a Long Time Support

(LTS) distribution.

• FTP storage with at least 1 GB of space. FacsKin uploads measurement

data to this FTP storage and Caflux looks at this storage from time to time

for new gated data files uploaded for analysis. For security you should set a

data size limit of 300 MB for uploaded files.

• Email account with SMTP interface for sending emails. The measurement

results (kinetics files) will be sent back to the users using this email account.

42

http://download.facskin.com/FacsKin.zip

The installation requires the following steps:

1. Install the following packages that are required by Caflux (Ubuntu package

names): libio-socket-ssl-perl, r-base, curlftpfs.

2. Create a user named caflux without administrator priviliges (command

useradd), the home folder should be /home/caflux. Make sure that the user

belongs to fuse group. This is required because the communication with

the FTP server is done using curlftpfs which uses FUSE (Filesystem in

USErspace).

3. Unzip the contents of caflux.zip to /home/caflux, thus creating a folder

/home/caflux/caflux.

4. Execute the following commands to compile dlogistx.c which is required by

the R scripts:

cd /home/caflux/caflux

R CMD SHLIB dlogistx.c

5. Execute the following commands to download and unpack the sendEmail pro-

gram [29] which Caflux uses for sending emails:

cd /home/caflux/caflux

wget \

http://caspian.dotconf.net/menu/Software/SendEmail/\

sendEmail-v1.55.tar.gz

tar xvzf sendEmail-v1.55.tar.gz

mv sendEmail-v1.55/sendEmail .

rm -rf sendEmail-v1.55*

6. Edit the passwords file with the data of the FTP storage and an SMTP

server details of the mail account. Make sure that parameters having spaces

are quoted, such as:

MAILFROMFIELD="\"FacsKin Team <calciumflux@gmail.com>\""

7. Set necessary permissions to the scripts:

cd /home/caflux/caflux

chmod go-rwx *

chmod u+x caflux_* *.sh sendEmail passwords

chmod u+r *

chmod u-w * # we turn off write mode to avoid accidental modification

43

8. Create folders containing analysis results with the create_folders.sh script:

cd /home/caflux/caflux

./create_folders.sh

9. Copy the contents of rc.local to the end of /etc/rc.local so that the

analysis automatically starts when the computer is turned on.

10. Restart the computer. The script should be running from now on.

3.4.2 Maintenance

The list of files in /home/caflux/caflux and their purpose is listed in Tables 3.2

and 3.1. The data flow between components is shown in Figure 3.28. Gated files

have unique names which contain the date of upload and the email address of the

uploader.

Figure 3.28: Data flow between components in Caflux.

44

Caflux is designed for moderate usage. This means that the following mainte-

nance steps should be performed at least monthly:

• Perform an analysis by uploading arbitrary measurement data and wait for

the result. If no result arrives, find the cause for the error.

• Check if there are any analyses that resulted in error (error.* folders). If

this is the case, find out the cause of the error. Errors can be caused by

bad measurements (such as too few events), communication problems (file

corruption during upload) or bugs in Caflux.

• Check the disk space on the computer where Caflux is running. If there is a

lack of disk space, delete or archive gated data in the archive.data folder. It

is recommended to have 500 GB of free disk space continously on the computer

where the analyses run.

• Check if there are any partially uploaded measurements in the FTP storage

(these should have a file extension .gz, not .gz.completed) that have been

there for a long time, ie. they are not being uploaded currently. If this is the

case, delete them.

• Check the application log caflux-stdout for errors especially for records of

problems with sending emails (SENDVERIFIED).

Additional tasks of the administrator can include:

• If a FacsKin user is not able to upload the gated data, she can save it to

her computer with FacsKin, and send the gated file to the administrator. By

renaming the file to yyyyMMddHHmmss.email_address.gz format and simply

copying it to folder justcopied.data, the analysis of the file will be performed

just as if it had been uploaded.

• If a FacsKin user complains about not receiving the email containing a specific

kinetics file, the administrator can look up that file in the archive.result

folder and send it manually to the user.

3.4.3 Uninstallation

To uninstall Caflux:

1. Optionally archive measurement and analysis data from

/home/caflux/caflux.

45

2. Delete user caflux using the userdel command and delete the home folder

(/home/caflux).

3. Delete the line from /etc/rc.local copied dur-

ing the installation (line starting with su caflux -c

"nohup /home/caflux/caflux/start_analysis.sh).

Folder names Contents
archive.* Archived measurements, results and outputs.
error.* Measurements (and outputs) the analysis of which re-

sulted in an error.
examples Test files used by test-64.R.
justcopied.data Gated files waiting for analysis.
pending.* Measurements, outputs and results during analysis.
toverify.result Kinetics files waiting for verification by

caflux_autoverify.
tosend.result Kinetics files waiting for sending by

caflux_sendverified.
toattach.result Temporary folder used by caflux_sendverified.
mnt The FTP storage is mounted here by caflux_go_copy.

Table 3.1: Components of Caflux (directories in folder caflux).

46

Filenames Purpose
caflux-64.R,
fct-64.R, dlogistx.so

The core of Caflux, the programs executing the calcula-
tions.

create_folders.sh,
rc.local, dlogistx.c

Files only needed for installation (purpose described
there).

passwords Contains authentication data for the FTP and SMTP
servers.

caflux_go_copy Shell script that copies the files from the FTP server to
folder justcopied.data.

caflux_fit Shell script that looks for newly copied gated data
in folder justcopied.data and executes the anal-
ysis by calling caflux-64.R. During the analy-
sis, the pending.* folders contain the gated file
(pending.data), the standard output and standard er-
ror (pending.stdout, pending.stderr) and the pro-
duced kinetics file (pending.result). If the analysis
ended successfully, the kinetics file is moved to folder
toverify.result and all the other files belonging to
the analysis (in folders pending.*) are moved to the
the corresponding archive.* folders. If the analysis re-
sulted in an error, all files belonging to the analysis
are moved to the corresponding errors.* folder. This
script runs in 8 instances by default (determined by
start_analysis.sh) in order to speed up analysis.

caflux_autoverify Moves files found in toverify.result to
tosend.result. This script could be modified in
the future to run verification / further analysis on
kinetics files. Verification could also be done by hand
by deleting this file.

caflux_sendverified This script sends the kinetics files found in
tosend.result to the user initiating the analysis
(the email address of the user is contained in the
metadata section of the kinetics (and corresponding
gated) file) and moves them to archive.result.

sendEmail This script is used by caflux_sendverified to send
emails.

start_analysis.sh,
stop_analysis.sh

Scripts for starting and stopping analysis. The num-
ber of caflux_fit processes can be adjusted in
start_analysis.sh (it is recommended to set the num-
ber of processes to twice the number of processor cores).

caflux-stdout Application log, all scripts’ standard output is redirected
here by the command copied to /etc/rc.local.

Table 3.2: Components of Caflux (files in folder caflux).

47

Chapter 4

Developer Documentation

4.1 Structure

The software is built up of two main components:

• FacsKin, which is a GUI-based Java program the user interacts with. It im-

plements Sections 2.1.1 and 2.1.3 of the specification. (There is a website for

the easy distribution and launch of FacsKin at http://www.facskin.com.)

• Caflux, which is a text-based service-like application which implements Section

2.1.2 of the specification. Caflux is put together from R [27] and bash scripts.

The separation of these two components has the following benefits:

• Phase two can be quite resource-intensive, and a dedicated hardware can speed

up the calculations.

• Allows the improvement of the algorithm for the second phase and re-analysis

of previous measurements centrally, if needed.

• Allows easier implementation (as R provides easy-to-use tools for statistical

analysis, data visualization etc) and more possibilities of experimentation.

• Allows the registration and assessment of need for such calculations, the pop-

ularity of the program can be measured.

.

The data flow between the components is shown in Figure 4.1.

The communication protocols between components are the following:

• The user can upload gated files for Caflux to the FTP connection. The exact

format of a gated file is specified in Section 2.1.1.2. The gated file is compressed

using GZIP and renamed to yyyyMMddHHmmss.email_address.gz where the

48

http://www.facskin.com

Figure 4.1: FacsKin, Caflux and communication between them. The communication
protocol is written in squared brackets.

timezone is that of Budapest and the email address is specified by the user

before clicking the Upload button in FacsKin. All characters not belonging to

[a-zA-Z0-9.-@] should be replaced by a _ character in the email (the filename

is only for easy identification of filenames for the administrator of Caflux, the

exact email address of the user is a metadata field in the gated file). After the

upload successfully finished an additional .completed extension should be

added to the filename to indicate to Caflux, that this file can be downloaded

from the FTP storage.

• The output of FacsKin is a kinetics file (extension .kinetics) the format of

which is specified in Section 2.1.2.2. This file is sent by Caflux to the email

address specified in the metadata section of the corresponding gated file as an

attachment.

• Comparison results can be exported from FacsKin by means specified in Sec-

tion 3.2.7.1

Failure handling:

• If the FTP upload does not succeed, the user is presented with an error message

and is able to save the gated file to her computer and send it manually to the

administrator of Caflux.

• If the FTP upload is interrupted, the filename will not contain the additional

extension .completed, and hence it will not be downloaded and analyzed by

Caflux.

49

• If the gated file is corrupted during FTP upload, it will only be noticed during

analysis and probably results in an error (and the results and error messages

end up in folders error.* on the computer running Caflux).

• If sending the email does not succeed, Caflux retries after 120 seconds. If the

email address was specified incorrectly in the gated file, the email gets lost.

The rest of Developer’s Documentation is separated to a section dealing with

FacsKin (4.2) and Caflux (4.3).

4.2 FacsKin

FacsKin is a GUI-based program implementing sections 2.1.1 and 2.1.3 of the spec-

ification.

4.2.1 System Plan

FacsKin is implemented in Java and contains several packages.

• User interface packages:

– facskin: contains the main application (class FacsKinApp) and the

class implementing the main window (class FacsKinView) along with

some helper classes and interfaces.

– facskin.fcs: user interface for opening, gating and uploading FCS files.

– facskin.kinetics: user interface for opening, grouping, pairing kinetics

files.

– facskin.compare: user interface for statistical comparison of data

(class ComparePanel, class MedianComparePanel).

– facskin.graph: classes implementing plotting mathematical data, func-

tions, histograms, box plots. These classes are used throughout the other

interface packages.

• Container package:

– facskin.formats: contains classes for storage and modification of FCS

data, gated data, kinetics and comparison data.

• Application logic packages:

– facskin.io: classes implementing input/output for FCS, gated and ki-

netics files.

50

– facskin.math: classes implementing mathematical and statistical meth-

ods used by the application.

4.2.1.1 User Interface

The static class diagram of FacsKin showing only classes that are important from

the point of view of user interface design are shown in Figure 4.2. FacsKinView has

a menu, a tab pane and a progress bar, the tab pane can contain tabs of the follow-

ing types: FcsPanel, KineticsPanel, ComparePanel, MedianComparePanel. Each

header of a panel has a title and a close button. The kinetics panel can only be opened

once (it can hold unlimited number of kinetics files, FacsKinView’s kineticsPanel

field stores a reference to the kinetics panel or null if no kinetics tab is opened),

the other panels can have inlimited number of instances.

The design of an FCS panel (together with the structure of FacsKinView) is

shown in Figure 4.3. The design of the kinetics panel is shown in Figure 4.4 and a

comparison panel is shown in Figure 4.5.

The contents of the menu bar are the following:

• File

– Open (opening an FCS file brings up a new FCS panel, opening a kinetics

file adds one row to the kinetics panel, opening a zip file containing n

kinetics files adds n rows to the kinetics panel)

– Append FCS (should be only active when there is an FCS file already

opened)

– Save As (should be only active when the kinetics panel is selected and

there is at least 1 kinetics file)

– Exit

• Preferences

– Standardization (checkbox)

– Draw function only in measurement timeframe (checkbox)

– Use ,/. as decimal separator (toggle)

– Set maximum time for AUC

– Set number of breaks in histogram plot

• Help

– User’s Guide

51

Figure 4.2: Class diagram of FacsKin showing classes important from the perspective
of user interface. FacsKinView contains a tabbed pane which can hold the other
panels as shown on the diagram. Fields and methods of the panels are grouped in
the following way: 1. pointers to parent panels, 2. container types for data that the
panel is holding, 3. pointers to child panels. Dashed line corresponds to implementing
an interface.

– About: shows an about box (class FacsKinAboutBox)

The options reached by the Preferences menu are stored globally by

class FacsKinApp. The about box contains general information about the pro-

gram, contact information and a version history. The User’s Guide is a HTML

version (using JTextPane) of Section 3.2.

FacsKin is a single frame application, FacsKinApp extends

52

Figure 4.3: UI design of FacsKin: gating an FCS file.

Figure 4.4: UI design of FacsKin: viewing kinetics files.

org.jdesktop.application.SingleFrameApplication and discoveres new

instances using class ApplicationInstanceManager and implementing the

ApplicationInstanceListener interface. This method was described in [28]. The

essence of the method is creating a dedicated socket for the application when first

starting the application, and when a new instance of the application is launched,

it first tries to connect to this socket, and when it is successful (and a shared

53

Figure 4.5: UI design of FacsKin: comparison panel.

key is matched), it notifies the first instance and passes the arguments to the

new instance. FacsKin can be launched using the command line and accepts the

command line parameter -open. If this parameter is given, later parameters will

be regarded as file paths to open (this is in complience with the Java Web Start

specification [21]).

KineticsPanel and ComparePanel are subclasses of

java.awt.datatransfer.ClipBoardOwner, so they can copy comparison data on

the clipboard. Right-clicking the table in KineticsPanel brings up a context-sensitive

floating menu having the following options:

• Get info: brings up a message box and prints all metadata contained in the

kinetics file in the current row. Only active when clicking the first column.

• Remove row: only active when clicking the first column.

• Copy parameter data: copies all parameter data in the corresponding row (if

clicked on first column) or the corresponding column (if clicked on one of the

parameter columns). The data will be copied in tab-separated, Excel-readable

format.

• Copy table contents: copies the full table contents to clipboard in tab-

separated, Excel-readable format.

• Copy all data as R code: creates R code which initializes variables containing

the same data as in the table and copies this R code to clipboard.

54

Clicking on the header of the table has the following effect:

• Clicking one of the function names selects that function as current function

(and updates the parameters and the plot).

• Clicking one of the parameter names selects that parameter (the column back-

ground becomes blue) and enables the Comparison button.

Clicking one of the table cells has the following effect:

• Filename column: selects the kinetics file in that row (row background becomes

blue, the corresponding curve in the plot becomes thick)

• Group column: one can select a group for the kinetics file from one of the

current groups or create a new group in a drop-down menu. Clicking “(new)”

brings up a string input dialog for the name of the new group.

• Pair column: one can select another kinetics file as a pair from a drop-down

menu.

• One of the parameter columns: selects that parameter (the column background

becomes blue) and enables the Comparison button.

The contents and states of tables are specified by table models, see Section

4.2.1.2.

Right clicking the plots in KineticsPanel and ComparePanel brings up a floating

menu with a menu item “Save as PNG”.

ComparePanel contains a table the contents of which can be copied to clipboard

in Excel-readable format by right-clicking the table and selecting “copy table con-

tents”.

MedianComparePanel contains a text panel the content of which can be exported

by Ctrl-C. It contains the comparison results (see 2.1.3) and R code for performing

the same computations (which can be used as a verification).

class TaskWithProgress in package facskin extends

org.jdesktop.application.Task which is used to implement time-consuming

calculations while keeping the User Interface responsive. All time-consuming

tasks in FacsKin are subclasses of TaskWithProgress and call the super con-

structor with the currently running application (FacsKinApp) as a parameter.

TaskWithProgress has a method setProgressValue(float) which sets the

progress of a task between 0 and 1. FacsKinView contains a task monitor

targetting the application which shows and updates the progress bar by imple-

menting a java.beans.PropertyChangeListener object. The following tasks are

implemented by this method in FacsKin:

55

• class FacsKinView: class OpenTask

• class FacsKinView: class FileAppendFCSTask

• class GatePanel: class ClearAllGatesButtonClickedTask

• class GatePanel: class ApplyGateButtonClickedTask

• class UploadPanel: class SaveGatedDataButtonClickedTask

• class UploadPanel: class UploadGatedDataButtonClickedTask

The state diagram of the user interface is shown in Figure 4.6.

4.2.1.2 Table models

KineticsPanel can contain three different kind of tables and the configuration

settings getShowDataByGroups() and getShowDataByPairs() in class FacsKin

specify the table currently shown. Table 4.1 shows which of the three tables is

shown in each case. See also the KineticsPanel part in Figure 4.6.

getShowDataByGroups() getShowDataByPairs() table shown comparison
false false kinetics table allowed*
false true pairs table not allowed
true false groups table allowed
true true groups table allowed

Table 4.1: The possible state of tables in the kinetics panel as given by the global
settings getShowDataByGroups() and getShowDataByPairs(). * If “Use only median
functions” not checked.

These tables are implemented using the model-view design pattern. The three

table models each corresponding to one table:

• KineticsTableModel shows all kinetics files in different rows and allows se-

lecting the group and the pair for each kinetics file. It is interactive and the

data that it shows is stored in fields of class KineticsPanel (i.e. datas,

groups, pairs).

• PairsTableModel underlies the table shown after pairing kinetics files. One

row corresponds to two kinetics files, an original one and it’s pair. The data

that it shows is stored in fields of KineticsPanel, namely pairsValues,

pairsNames, pairsGroups.

• GroupTableModel is used when grouping kinetics files (either directly after

using KineticsTableModel or after pairing (PairsTableModel)). The data it

contains is generated when clicking “Group Data” button in local variables of

56

Figure 4.6: State diagram of FacsKin User Interface.

function groupDataButtonClicked() in class KineticsPanel, and is passed

in the constructor of GroupTableModel.

These table models extend javax.swing.table.AbstractTableModel

and override it’s get[Row|Column]Count(), [get|set]ValueAt(),

getColumn[Name|Class](), isCellEditable() methods, but also implement

the following interfaces to the data contained in them:

• getContentsAsString() : String: returns the contents of the table in tab-

separated text table format as it is shown on the screen.

57

• getDistributionsFor1ParameterAsString(int param) : String: returns

the distribution of the given parameter in a tab-separated text table format.

• getDistributionsFor1DataAsString(int param) : String: returns the

distributions of the given data for all parameters in a tab-separated text table

format.

• getRCode() : String: returns R code [27] the execution of which initializes

variables containing the same data as in the table.

In ComparePanel ProbBinTableModel is used for the presentation of probabil-

ity binning comparison results. All data that it presents is given as constructor

parameter.

For every table the view is implemented using javax.swing.JTable.

4.2.1.3 Plots

Figure 4.7 shows the relation between the panels containing plots (GatePanel,

KineticsPanel, ComparePanel) and the classes in package facskin.graph. The

type of plots contained in that package are as follows:

• GraphHist: produce a histogram from one distribution (specific to FcsData).

• GraphScatterPlot: produce a two-dimensional density plot from a 2D-

distribution (two parameters in an FcsData).

• GraphKinetics: produce a plot of a function and corresponding median values

from one of the functions in a KineticsData object. The median values are

plotted as squares with 3-pixel long side length.

• GraphBoxPlot: produce box-and-whisker plots [2] for a list of distributions

(each box-plot in different colour).

• GraphHistogramPlot: produce histograms for a list of distributions

(each histogram in different colour with the same limits). The num-

ber of breaks in the histogram plot can be controlled by the

FacsKinApp.setNumberofBreaksinHistogramPlot() global setting.

GatePanel contains interactive plots, this is why these Graphs need mouse

event handling and need their parent GatePanel in a private field. They use the

functions getData(), getSelectedParam() etc. provided by GatePanel to plot

data. KineticsPanel’s plot (GraphKinetics) is not interactive but changes while

adding/removing/selecting different kinetics files or groups/pairs of kinetics files

in the table. To update the plot, KineticsPanel calls the reloadTransformer

58

function in GraphKinetics which repaints the plot by querying the kinetics data

provided by the functions getSelectedFunction(), getSelectedKineticsData(),

getGroupNumber() etc.

Figure 4.7: Class diagram of plots and how different panels use the classes in package
facskin.graph.

59

The coordinate system of the screen in Java is different from that of the plots that

we want to create. Distances on the screen are measured in pixels, not in arbitrary

units and the y coordinates of the pixels increase from top to bottom. To allow the

Graph* classes plotting seamlessly using real mathematical values and also enable

drawing strings or bullets on the plot using pixel values (so that a bullet would

be always recognizable regardless of the pixels pro real values ratio) we implement

class CoordinateTransformer for the conversion between the following units (see

the relation of the coordinate systems in Figure 4.8):

• real values (conventional mathematical coordinate system)

• virtual values (pixels, y coordinates increase from bottom to top)

• screen values (pixels, y coordinates increase from top to bottom)

The size of frame around the plot is fixed in pixels

(offset[Right|Left|Top|Bottom]) and the origo of the real coordinate sys-

tem can be placed anywhere by setting real[Right|Left|Top|Bottom] values in

the constructor.

4.2.1.4 Data Containers

The container classes are grouped together in package facskin.formats.

Classes storing an FCS file or gated data are shown in Figure 4.9. FcsData con-

tains some metadata (an array of strings) and a table containing events as rows and

columns as parameters (data). To speed up generating plots while gating, caches for

histograms and scatter plots are also kept there (these are stored in the helper classes

HistogramList and PlotList). There are functions for appending another FcsData

(append(FcsData)) and for creating gates ([inverse][Hist|Plot]Gate(...)). We

keep a copy of the original FCS data in firstData so that all gates can be undone by

overwriting data with firstData. This is performed by clearGates(...). FcsData

closely represents the gated data format as descriped in Section 2.1.1.2.

The runtime representation of a kinetics file (specification in Section 2.1.2.2) is

class KineticsData. A kinetics file contains 5 functions (FunctionData) and each

function contains a number of parameter distributions (ParameterData). That is,

the parameter table stored in a kinetics file is stored by columns in memory (which is

helpful for extracting comparison data). When standardizing (see 2.1.3) parameter

data, the original data is not be modified but a multiplier is set from 1 to something

else and the getters provide values multiplied by this standardizer. The standardizer

values are stored at the level of ParameterData (field standardizer) while their

exact value can be set at level FunctionData (method setStandardizer) and turn-

ing on and off standardization can be set at level KineticsData. ParameterData

60

Figure 4.8: The three coordinate systems (screen, virtual and real) and the relation-
ships of different fields in CoordinateTransformer. The origo point of each coordinate
system is marked with (0,0).

is a dynamic container in sence of standardization but it does not allow the mod-

ification of parameter data since that is fixed in a kinetics file. However, during

comparison distributions of parameters can be merged, paired (substracted) etc.

so we have to provide a class that allows such modifications (but disallows) stan-

dardization. This is ComparisonData which, together with ParameterData is an im-

plementation of interface Data that provides getters to access data contained in

such an object. Plotting these values is helped by caching quantile values (methods

getQuantile(...)). The relations between these classes and their corresponding

fields are shown in Figure 4.10.

4.2.1.5 Input/Output

Input/Output classes are placed in package facskin.io.

Reading data from FCS files (2.1.1.1) is handled by

facskin.io.FcsOpener. The constructor needs a java.io.InputStream

61

Figure 4.9: Class diagram of container classes for FCS data.

and the class provides the getData() : ArrayList<double[]> and

getKeywordValue(keyword : String) : String functions for getting data

and metadata as well as functions for getting parameter names etc.

facskin.io.GatedDataWriter writes data for one selected parameter in an

FcsData to a java.io.OutputStream in the format specified in 2.1.1.2. It is used

by UploadPanel during uploading data to the FTP storage and also when saving

gated data as a single file.

facskin.formats.KineticsData contains a reader for the kinetics format

(2.1.2.2). We also provide a writer for kinetics format (KineticsDataWriter). We

allow saving multiple kinetics files into one zip so as to ease opening multiple files.

Reading and writing such files is implemented in KineticsZip. KineticsZip has

two constructors, one that accepts a file to read from (getters provide the data

just read) and another that accepts the runtime representation of a list of ki-

netics datas (method writeDatas(File) saves datas to file). Some preferences

are also stored in these zip files such as the group for each kinetics file (file-

name __groups, reader GroupReader), selected pairs (filename __pairs, reader

GroupReader is used here as well because we use the same format), selected function

(file __selectedFunction, reader SelectedFunctionReader) and maximum time

for AUC (file __maxTimeForAUC, reader MaxTimeForAUCReader). The format that

GroupReader accepts is the following: a simple text file containing even number of

lines, the (2 ∗ i + 1)th line being the filename of a kinetics file and the (2 ∗ i + 2)th

62

Figure 4.10: Class diagram for containers of kinetics data.

line is it’s group (in case of pairing this latter is the filename of it’s pair or empty if

no pair was set).

Figure 4.11 show the usage of IO classes.

Other kind of outputs FacsKin provides are cut and paste methods by several

User Interface classes as described in 4.2.1.1.

63

Figure 4.11: Class diagram for input/output classes.

4.2.1.6 Math classes

Package facskin.math contains classes providing mathematical and statistical def-

initions and algorithms needed for FacsKin. These classes mostly contain static

functions.

• class Functions: provides static definitions of the 5 functions listed in 2.1.2.3

and some helper methods:

– constant(), logistp(), logistn(), dlogistp(), dlogistn(): the func-

tions as-is

– fct(): reach the functions by name

– getFunctionName(): reach the functions by id (which ranges from 0 to

4)

– paramCount(): query the number of parameters of a function

– getParameterName(fct : [int|String], param : int): name of pa-

rameter of a function

– paramsToStandardize(): query the parameters which need standardiza-

tion

64

– getAUC(fct : String, pars : double[], tmax : double): calcu-

late parameter AUC

– isParameterOutside(): a method which calculates whether a parameter

is outside a given range (this is used as a feedback to the user to assess

overfitting of functions, see Section 3.2.6.1, part “How to choose the best

function”).

This class is used in the table models in package facskin.kinetics, in

KineticsPanel, FunctionData and GraphKineticsRenderer.

• class KruskalWallis implements Kruskal-Wallis rank-sum test [3] by pro-

viding a static function test(List<List<Double>>) : double[]. The return

value is an array giving the statistic and the p-value (in this order). This class

is used by MedianComparePanel.

• class MannWhitney implements Mann-Whitney U test (or Wilcoxon

test) which is a more specific version of Kruskal-Wallis rank-

sum test. The interface is similar to that of Kruskal-Wallis:

test(p1, p2 : List<Double>) : double[]. This class is only used

for test purposes.

• class ProbabilityBinning implements PB comparison [11]. It provides

static functions (defaultBinCount()) for calculating a suggested bin count

for a list of Datas or KineticsDatas. The suggested default bin count is the

1/10th of the number of values in the smallest group. PB works as follows: a

control group (list of double values) and a bin count are specified (parameters

of constructor ProbabilityBinning(control : Data, binCount : int)),

and we divide the range of values in the control group into the specified

number of bins, each bin having the same amount of values. (Because the

number of values is not necesseraly divisable by the number of bins, there

may be a slight variation of number of values pro bin, hence we store the

number of control values for each bin in field control_counts : double[].)

We can compare a list of values with the control group by counting the

number of values for each bin and calculating a chi-squared statistic by

the following formula: χ2 =
∑

i is a bin
(controlRelcountsi−testRelcountsi)2
controlRelcountsi+testRelcountsi

. Accord-

ing to [11], the T = max(0, χ
2−B/E√
B/E

) statistic has standard normal distri-

bution (B is the bin count, E = min(size of control, size of test)). Function

compare(Data) : double[] returns the T value and the associated p-value.

We also provide a function getLimits : double[] returning the limits of the

bins (this is used by MedianComparePanel when plotting). This class is used

65

by ComparePanel and by KineticsPanel, the latter when pairing kinetics files

if “Use only median functions” is not selected.

• class Statistics implements some very basic statistical functions:

– median(List<Double>) : double

– quantile(List<double>, q : double) : double

– overlap(highs, lows : double[]) : double: calculates the relative

size of overlap among intervals given by their low (lows) and high limits

(highs): min
i

min(highs)−min(lows)
highsi−lowsi .

This class is used by [Median]ComparePanel and ParameterData.

• class MyDecimalFormat implements methods for formatting dec-

imal numbers so that they match the global configuration

FacsKinApp.getDecimalSeparator() and ensure a nice short output

(format(), formatShort()) or do not lose any decimals which is help-

ful when extracting numeric data to other programs (formatLong(),

formatLongPoint). If needed for the nice presentation, numbers are

outputted in exponential format.

4.2.1.7 Error handling

Errors are detected either:

• before they arise by careful handling of state (checking valid ranges of a vari-

able, disabling buttons, automatically moving to another state).

• after they occur by catching exceptions (usually popping up an error message)

and changing to a valid state / reverting to a valid state.

In the Graphical User Interface, some errors are avoided by disabling user

interface elements that do not make sense:

• “File/Append FCS” menu item is only enabled when an FCS file is already

opened for gating. It is disabled when the active tab is not an FcsPanel

([dis|en]ableAppendFCS() function in FacsKinView).

• “File/Save as” menu item is only active when the kinetics tab is active and

there is at least one kinetics file in the table ([dis|en]ableSaveAs() function

in FacsKinView).

• FcsPanel:

66

– “Apply Gate” button is only enabled when a gate is selected

([dis|en]ableGateButton() function in GatePanel).

– “Polygon/Rectangular gate” selection, “Log” and “Show medians” check-

boxes on the y axis are only enabled when using scatter plot.

– “Done gating” button is only enabled when GatePanel is active, “Back

to gating” button is only enabled when UploadPanel is shown and an

upload is not currently in progress ([dis|en]ableBackward() functions

in FcsPanel).

• KineticsPanel:

– “Compare” button is only active when a parameter is selected (and not

in paired mode) and when “Use Only Median Functions” is selected, only

in grouped mode.

– “Pair Data” button is only active when measurements are not grouped

The text of buttons are changed according to the states as shown in

Figure 4.6.

Disabling a button is not always the best idea, because it does not give any user

feedback why that particular UI component cannot be used. We use a message

box (showMessageDialog() function injavax.swing.JOptionPane) in 31 cases in

FacsKin giving a detailed error description and hints on how to correct the error:

• FacsKinView:

– When the preference settings are not numeric or outside a range (≥ 1

for maximum time for AUC, ≥ 0 and ≤ 100 for number of breaks in

histogram plot).

– File read errors (specific error messages for FCS files containing no time

parameter).

• UploadPanel:

– When clicking the “Upload gated data” button without having at least

200 events or without having selected a paramerer, entered a name for

the analysis and an email address. The same holds for “Save gated data”

button.

– Different messages and hints for different kind of network errors.

– Error messages when saving gated data not does not succeed.

• KineticsPanel:

67

– When trying to compare using Kruskal-Wallis test without having se-

lected at least two groups.

– When trying to save the plot but there is a file write error.

• ComparePanel:

– When trying to set a bin count outside the range (bin count should be

between 2 and the third of the size of the smallest group).

– When trying to save the plot but there is a file write error.

In KineticsPanel, when table data has to be recalculated because the max-

imum time for AUC has been changed or standardization has been toggled, the

grouped/paired data can be corrupted so in such cases the state is changed back

to non-paired and non-grouped mode automatically as shown in Figure 4.6 to avoid

data corruption.

4.2.2 Implementation

4.2.2.1 Version History

FacsKin was implemented using NetBeans 6.9.1 [24] on NixOS [25] and Ubuntu [30]

operating systems between 15 April 2009 and 29 April 2012. The version history

can be viewed in the About box. The current version described in this document is

Version 0.5.13.

FacsKin has been first implemented for internal usage of the FACS Laboratory

at Semmelweis University, Budapest, but later has been used by other laborato-

ries throughout the world. The analysis algorithm has changed several times during

implementation (together with the kinetics format to reflect changes in the algo-

rithm) and several user interface improvements have been added as well. Changes

in the user interface between different versions are shown in Figures 4.12, 4.13, 4.14.

The overall structre of the program has remained the same in compliance with the

specification (Section 2.1).

Main changes in the program structure included:

• Creating data containers for kinetics data, comparison data.

• Adding support for more than two groups (version 0.4.13), thus creating one

more table and corresponding table model in package facskin.kinetics and

replacing Mann-Whitney U test with Kruskal-Wallis rank sum test.

• Adding support for pairing kinetics datas (version 0.5.9), thus creating one

more table and corresponding table model in package facskin.kinetics.

68

• Implementing probability binning comparison (version 0.4.17).

• Adding org.apache.commons.math as a library dependency to provide func-

tions of approximated chi-squared and normal distributions.

• Standardization has been once turned off (version 0.3.1), then turned on (0.4)

and then made configurable (version 0.4.4).

• The decision was made that facskin.formats.FcsData should contain the

in-memory copy of the fcs file read, so that gates can be cancelled in an easy

way. (The other solution could have been to re-read the original FCS file when

clicking “Clear all gates”.)

• The way the program can be launched changed several times by adding the

possibility to open multiple files, a command line interface and a Java Web

Start interface.

My overall impression of the NetBeans programming environment has been very

positive, the function completion, instant function documentation feature and the

“Find usages” command have been especially helpful.

Figure 4.12: Screenshot of FacsKin version 0.1-3. Note that there is only a checkbox
for the group (hence, only two groups are possible) and a drop-down list for functions.

4.2.2.2 Further Development

FacsKin could be improved in several ways:

• The gating phase (Section 2.1.1) could allow cancelling gates individually by

storing the gates in symbolic expressions. FCS format 3.1 [16] has support for

69

Figure 4.13: Screenshot of FacsKin version 0.3.1. Note that each function has a
separate column.

storing the gates, hence the storage of such files would be possible without

creating a new format. Currently FacsKin cannot save FCS files.

• The analysis phase (creation of kinetics file, Section 2.1.2) could be integrated

into FacsKin which would speed up and ease the usage of the program.

• FacsKin could be integrated into another Flow Cytometry analysis program

which already has useful features such as creating multiple gates, trees of gates,

one-parametric analysis, grouping of FCS files etc.

4.2.2.3 Interesting Algorithms

Interesting algorithms used by FacsKin include:

• Scatter plot polygon gate in facskin.formats.FcsData uses the so-called

crossing-count algorithm to detect whether a point is inside a polygon. The

(x, y) point is inside the polygon represented by the xsi, ysi, i ∈ Zn values iff

the following value is odd:

n∑
i=0

χ

(
(ysi < y ≤ ysi+1 ∨ ysi+1 < y ≤ ysi) ∧

y − ysi
x− xsi

<
ysi+1 − ysi
xsi+1 − xsi

)
where

χ(true) = 1 and χ(false) = 0

point1 and point2 correspond to x and y and points1 and points2 cor-

respond to xs and ys in the function inside_poly. To count whether the

70

Figure 4.14: Screenshot of FacsKin version 0.4.13. Note that there is a drop-down
list for groups but still no pairing and no comparison buttons in the bottom.

number is odd, we simply negate a boolean variable every time when the

above expression inside χ is true.

• Kruskal-Wallis rank sum test in facskin.math.KruskalWallis. This was

implemented following the R function kruskal.test (see the comments in

the source code). We used the chi-squared distribution provided by library

org.apache.commons.math.

• Mann-Whitney U test in facskin.math.MannWhitney has been implemented

as follows:

71

The values in the two groups are xi, yj, i ∈ {1, ...,m}, j ∈ {1, ..., n}.

U = max(U ′,m ∗ n− U ′) where

U ′ =
m∑
i=0

n∑
j=0

f(xi, yj)

f(a, b) =


0.5 a = b

1 a > b

0 a < b

p = min(p′, 1) where

p′ =

pw(m ∗ n− U,min(m,n),max(m,n)) ∗ 2 max(m,n) < 10

pstnorm(u−m∗n/2√
m∗n∗(m+n+1)/12

) ∗ 2 otherwise
where

pw(q,m, n) =

q∑
i=0

cw(i,m, n)(
m+n
n

) where

cw(k,m, n) =



0 k < 0 ∨ k > m ∗ n

0 m = 0 ∧ n = 0 ∧ k > 0

1 m = 0 ∧ n = 0 ∧ k = 0

cw(k − n,m− 1, n) + cw(k,m, n− 1) otherwise

pstnorm(z) =
1√

2 ∗ π
∗
∫ ∞
z

e
−x2

2 dx

The procedure returns U and p. Function cw() and the calculation of combi-

nations is implemented using memoization (this is why the fields are static in

class MannWhitney) and integration is implemented using a simple numerical

integration method using trapezoidal rule.

• The implementation of probability binning comparison in

facskin.math.ProbabilityBinning is described in Section 4.2.1.6.

4.2.2.4 Compilation and Distribution

The source code and compilation utilities for FacsKin in folder FacsKin are the

following:

• folder src: Java source code of FacsKin organized in packages as described in

Section 4.2.1.

• folder test: test packages.

72

• folder nbproject: NetBeans project configuration files.

• folder lib: libraries used by FacsKin. These are the following:

– AbsoluteLayout.jar, appframework-1.0.3.jar,

swing-worker-1.1.jar: packages needed for the Swing GUI framework.

– commons-math-2.2.jar: package needed for statistical functions (Section

4.2.2.3).

– commons-net-ftp-2.0.jar: package providing FTP upload support

(used by class UploadPanel in package facskin.fcs).

• folder dist: the distribution folder, FacsKin.jar and a copy of the libraries

are placed here after compilation.

• folder build: folder containing objects files during build etc.

• folder examples: folder containing example and test kinetics and fcs files (see

Section 4.2.3), temporary files are created here during running the test suite.

• build.xml: build configuration file (with instructions on how to perform

build).

• FacsKin.bat, FacsKin.sh: application launchers for Windows and Linux.

• keystore: storage for private keys for signing FacsKin (this

is required when distributing applications with Java Web

Start). This file was generated with the following command:

keytool -genkey -alias facskin -keystore keystore -validity 36500.

It is referred to in nbproject/project.properties.

• FacsKin.php: FacsKin Java Web Start launcher (JNLP). We create a specific

version of this file for new versions of FacsKin because we distribute FacsKin

in a FacsKin-VERSION.jar file where VERSION is the current version number.

• package.sh: a shell script helping the distribution of FacsKin. It executes the

following steps:

1. Grep for the version number and release date in

src/facskin/resources/FacsKinApp.properties (editing the field

values in the About box places these data here).

2. Create a zip bundle for FacsKin (see Section 3.2.2).

3. Mount remote filesystem.

4. Copy the zip bundle to the server.

73

5. Rename FacsKin.jar to FacsKin-VERSION.jar, apply the version num-

ber in the JNLP file (FacsKin.php) and copy the JNLP bundle to the

server.

6. Extract the documentation (corresponding to Sec-

tion 3.2 in this document) from the source code

(src/facskin/resources/usersguide.html), update links in it

and copy it to the server.

7. Delete temporary files and unmount remote filesystem.

To compile and distribute FacsKin, you need to do the following:

1. Specify the login information for the FTP storage for gated files

(src/facskin/fcs/UploadPanel.java, fields server, user, password) and

for the server used for the distribution (package.sh, fields FTPUSER,

FTPPASSWD, FTPDOMAIN).

2. Execute the following commands from the command line in folder FacsKin:

ant jar # compilation

./package.sh # distribution

4.2.3 Testing

4.2.3.1 Tests using the GUI

The following black-box tests should be performed with the User Interface each time

before distributing a new release of FacsKin. They test almost every part of the GUI

and basic properties of the main algorithms.

• Program launch and file handling:

– Launch FacsKin, “File/Open” examples/1.kinetics. “File/Open”

examples/5.kinetics. Both should be shown in the same kinetics tab.

Exit FacsKin.

– Launch FacsKin, “File/Open”, select examples/1.kinetics and

examples/5.kinetics in the File Open panel and click “Open”. Both

kinetics files should be opened. Exit FacsKin.

– Launch FacsKin. “File/Open” examples/1.kinetics, “File/Open”

examples/baseline.fcs, in the kinetics tab, click column “Starting

value” and click button “Comparison” so that we have 3 tabs. Check

74

wether the “File/Save as” menu item is only active when the kinetics tab

is active and the “File/Append FCS” menu item is only active when the

FCS tab is active. Right click the first column in the table of the kinetics

tab and select “Remove row”. When there are no kinetics files in the

kinetics tab, the “File/Save as” menu item should be inactive. It should

stay inactive when we switch to another tab and back. Exit FacsKin.

– Linux: test the command line interface (in folder FacsKin):

cd examples; FacsKin.sh 1.kinetics 5.kinetics baseline.fcs.

Two kinetics files should be shown in the kinetics tab and there should

be a tab named “baseline.fcs”. Exit FacsKin.

– Test multiple launches:

– Windows: test filetype association and multiple instances. After launch-

ing FacsKin in Java Web Start, double-click a 1.kinetics in folder

examples. It should be appear in the kinetics tab of the already launched

instance.

– Test zip file opening: open examples/cf.zip. Modify some groups, pairs,

delete a row, modify “Preferences/Set Maximum time for AUC”, modify

the currently selected function, click “File/Save As” and save as a dif-

ferent filename. Exit FacsKin, launch FacsKin and open the previously

saved zip file and check whether the kinetics files, groups, pairs, maximum

time for AUC and selected function are the ones you specified.

• Gating:

– Launch FacsKin. “File/Open” examples/baseline.fcs, “File/Append

FCS” (30 seconds) examples/reaction.fcs and check whether there is

a 30 second gap by selecting “Time” on x axis and any other parameter

on the y axis. Exit FacsKin.

– Launch FacsKin. “File/Open” examples/test.fcs, the event count

should be 13013 and the measurement date “01-JUN-2006 15:06:40”.

FSC-SSC polygon gate the rectangular area at the bottom. The remaining

event count should be 7444. Clear all gates (13013 event should appear).

Inverse polygon gate the same range. 5569 events should remain. Clear

all gates. Rectangular gate and rectangular inverse gate the same range,

and the same number of events should remain as previously. Clear all

gates.

– Repeat the same process with logarithmized axes (3 possibilities: x: log,

y: lin; x: lin, y: log; x: log, y: log). The numbers should remain the same.

75

– Clear all gates. Select “Time” on axis x and “Histogram” on axis y. Gate

so that the first three and last three columnds remain outside. 6925 events

should remain. Clear all gates. Apply the same gate with “Inverse gate”

checked. 6088 events should remain.

– Clear all gates. Gate so that the last three columns remain outside. 10303

events should remain. Clear all gates. Select logarithmic scale on axis x,

and repeat the previous gate. The same amount of events should remain.

– Clear all gates. FSC-SSC polygon gate the rectangular area at the bot-

tom. Select “APC-A” and logarithmic scale on axis x and “Histogram”

on axis y. Perform a gate so that only the first big column remains outside

(gate range between values 0.2 and 2.9). 2688 events should remain.

– Select a gate so that 0 events remain. The plot should become gray and all

the buttons, controls disabled. If you click “Clear all gates”, the controls

should become enabled again and the plot should show scatter plot.

• Upload:

– Launch FacsKin. “File/Open” examples/baseline.fcs, “File/Append

FCS” (30 seconds) examples/reaction.fcs. Click “Done gating” and

click “Upload gated data” and “Save gated data”. You should not be

allowed to upload/save until you have selected a parameter, specified a

name and an email address. If you remove one of these, you should not

be allowed to do upload/save.

– Launch FacsKin. “File/Open” examples/baseline.fcs, gate so that less

that 200 events remain. Click “Done gating” and try to upload data. You

should not be allowed to upload or save gated data unless you have at

least 200 events.

• KineticsPanel:

– Launch FacsKin. “File/Open” examples/cf.zip, click the header in

each column corresponding to a function and check that the parame-

ter columns change so that each function has the parameters as specified

in Section 3.2.6.1. Exit FacsKin.

– Launch FacsKin. “File/Open” examples/cf.zip, select function “con-

stant” and change the “Preferences/Set Maximum Time for AUC” to 100.

Check that the AUC value in “CF01 Control...” row becomes 119.332.

Set maximum time to 200, the AUC value should double, i.e. to 238.664.

Exit FacsKin.

76

– Launch FacsKin. “File/Open” examples/cf.zip, remove the first row,

notice that in row “CF01 test” the value in column “Pair” dissappears.

Exit FacsKin.

– Launch FacsKin. “File/Open” examples/cf.zip, click “Pair Data” and

check whether 5 rows appear with filenames “CF0* test...” where * ranges

from 1 to 5. Click “Group Data”, note that 3 rows appear, “A”, “B”

and “C” with sizes 2, 2, 1, correspondingly (3 different colours). Check

whether selecting a row selects the corresponding curves in the plot. Click

“Back (no grouping)”, click “Back (no pairing)” and click “Group Data”.

Note that 3 rows appear, “A”, “B” and “C” with sizes 804, 804, 402, cor-

respondingly (3 different colours). Check whether selecting a row selects

the corresponding curves in the plot. Exit FacsKin.

– Launch FacsKin. “File/Open” examples/cf.zip, check “Use only me-

dian functions”, click “Pair Data” and check whether 5 rows appear with

filenames “CF0* test...” where * ranges from 1 to 5. Click “Group Data”,

note that 3 rows appear, “A”, “B” and “C” with sizes 2, 2, 1, correspond-

ingly (3 different colours). Check whether selecting a row selects the cor-

responding curves in the plot. Click “Back (no grouping)”, click “Back

(no pairing)” and click “Group Data”. Note that 3 rows appear, “A”, “B”

and “C” with sizes 4, 4, 2, correspondingly (3 different colours). Check

whether selecting a row selects the corresponding curves in the plot. Exit

FacsKin.

– Launch FacsKin. “File/Open” 5.kinetics and 25.kinetics, toggle

“Preferences/Standardization” and check whether the parameters and

plots change accordingly. Toggle “Draw function only in measurement

timeframe” and check whether the plot changes accordingly. Toggle “Use

,/. as decimal separator” and check whether the presentation of numeric

values in the table change accordingly.

• Comparison:

– Launch FacsKin. “File/Open” examples/5.kinetics and 10.kinetics.

Click Column “Time to reach maximum” and click “Compare”. In the

appearing comparison panel, check that the plot contains two box and

whiskers diagrams and the median and quartile values on the diagrams

are the same as the ones specified in the table in the kinetics tab. Switch

to Histogram and check whether it corresponds to the boxplot. In the

lower right corner select “5.kinetics” as control group and check that the

“T(chi)” value in the row “5.kinetics” is 0.0, the p-value is 0.5 and the

77

overlap is 100%. Check whether the “T(chi)” values in the bottom of

the box plot are the same as in the table. Select “10.kinetics” in the

lower right corner and check that the values change the same way in the

corresponding row. Set the bin count to different values and note how the

gray lines change correspondingly in the plot.

– Perform the same steps but after deselecting “Prefer-

ences/Standardization”. Create a different group for one of the

measurements, click “Group Data” and click “Compare”. The result

should be the same as before.

– Change “Preferences/Set number of breaks in histogram plot” to 20 and

check whether it has effect on plots created after selecting this.

– Launch FacsKin. “File/Open” examples/cf.zip, click “Pair Data”, click

“Group Data” click column “Starting value” and click “Compare”. Copy

and execute the R code in an R environment and check whether the chi

square, degrees of freedom and p-values are the same as given by FacsKin.

– Launch FacsKin. “File/Open” examples/cf.zip, select “Use only me-

dian functions”, click “Group Data” click column “Starting value” and

click “Compare”. Copy and execute the R code in an R environment and

check whether the chi square, degrees of freedom and p-values are the

same as given by FacsKin.

• Data export:

– Launch FacsKin. “File/Open” examples/cf.zip, right-click the plot, se-

lect “Save as PNG” and verify that the file is the same as the plot. Select

a row in the table, save the plot as PNG and verify that the file is the

same as the plot (showing a function selected). Repeat the same after

pairing data, grouping data and pairing+grouping data.

– Launch FacsKin. “File/Open” examples/cf.zip, right-click the table,

select “Copy table contents”. Paste the contents of the table into a text

editor and verify that they are the same. Check “Use only median func-

tions” and repeat the same.

– Launch FacsKin. “File/Open” examples/cf.zip, right-click a col-

umn in the table, select “Copy parameter data”. Paste the con-

tents into a spreadsheet program (such as LibreOffice [23]) and

calculate the median and quartiles (functions median(CELLRANGE),

percentile(CELLRANGE, 0.25), percentile(CELLRANGE, 0.75)) for

each row and verify that these are the same as that in the table.

78

– Launch FacsKin. “File/Open” examples/cf.zip, check “Use only me-

dian functions”, right-click a column in the table, select “Copy parameter

data”. Paste the contents into a text editor and verify that they are the

same.

– Launch FacsKin. “File/Open” examples/cf.zip, right-click the first col-

umn in a row of a kinetics file in the table, select “Copy parameter data”.

Paste the contents into a spreadsheet program (such as LibreOffice [23])

and calculate the median and quartiles (functions median(CELLRANGE),

percentile(CELLRANGE, 0.25), percentile(CELLRANGE, 0.75)) for

each row and verify that these are the same as that in the table.

– Launch FacsKin. “File/Open” examples/cf.zip, check “Use only me-

dian functions”, right-click the first column in a row of a kinetics file in

the table, select “Copy parameter data”. Paste the contents into a text

editor and verify that they are the same.

– Launch FacsKin. “File/Open” examples/1.kinetics and 5.kinetics,

right-click the table and select “Copy all data as R code”. Paste the data

into a new R environment and execute it. Verify that the following two

command reproduce the data in the table:

lapply(params[["1.kinetics"]], function(pars) {

print(paste(median(pars), quantile(pars, 0.25),

quantile(pars, 0.75)))

})

lapply(params[["5.kinetics"]], function(pars) {

print(paste(median(pars), quantile(pars, 0.25),

quantile(pars, 0.75)))

})

Check whether the variable fct has value "dlogist+" and metadata has

the following value:

name size

1 1.kinetics 201

2 5.kinetics 201

– Launch FacsKin. “File/Open” examples/cf.zip, select a parameter,

click “Compare”, right click the table appearing and select “copy ta-

ble contents”. Paste the contents of the table into a text editor and verify

that the contents are the same. Right-click the plot and select “Save as

PNG”, verify that the file is the same as the plot. Change to histogram

view, save the plot as a PNG and verify that it looks the same.

79

• The user interface should feel responsive during all the previous steps.

4.2.3.2 Unit tests

The unit tests for FacsKin are contained in the test folder:

• facskin.io.FcsOpener: tests reading different FCS formats, esp. FCS 2, FCS

3, files with logarithmized parameters, FCS 3 files with spillover matrix. The

flowCore R package [18] was used to verify the data. When implementing

support for new FCS formats, these tests should ensure that support for old

files does not break.

• facskin.io.KineticsDataWriterTest: tests whether reading a kinetics file,

writing it to another file and reading it back results in the same data.

The comparison for KineticsData is implemented in the helper class

KineticsComparison.

• facskin.io.KineticsZipTest: tests whether reading a zip file (which con-

tains kinetics files and metadata for groups, max. time for AUC etc.), writ-

ing it to another file and reading it back results in the same data. The

comparison for individual KineticsDatas is implemented in the helper class

KineticsComparison.

• facskin.formats.FcsDataTest: tests reading FCS data, and also all kinds of

gating, clearing gates, appending another FCS file, creation of histograms and

scatter plots. Guessing the number of the time parameter from the metadata

keywords in the FCS file is the job of this class, this is why several different

types of FCS files are read in function testGetTimeParamNumber().

• facskin.formats.ComparisonDataTest: tests both types of addition and

query of comparison data.

• facskin.math.KruskalWallisTest: we test the implementation of Kruskal-

Wallis rank sum test by static reference tests (testTest()) and by dynamically

creating test data (randomData()) and R code for comparison. We execute

the R code which compares the results provided by KruskalWallis and the

R implementation.

• facskin.math.MannWhitneyTest: we compare the Kruskal-Wallis rank sum

test when using two groups with the results of Mann-Whitney U test (they

should be equivalent).

80

• facskin.math.ProbabilityBinningTest: we test the algorithm providing

bins and limits for the control group (testGetLimits_ControlCounts()) and

the comparison algorithm (testCompare()) separately.

• facskin.math.StatisticsTest: we test the public functions of class

Statistics, namely overlap(), median() and quantiles() with different

kinds of input.

4.2.3.3 Test results

When implementing the tests several flaws in the algorithms were discovered (and

corrected). Some examples follow:

• Several UI bugs were discovered when following the testing algorithm as de-

scribed in Section 4.2.3.1, such as problems with plots when there are no events

during gating, enabling/disabling buttons and menu items was not always con-

sequent, both radio buttons in one group could be deselected at the same time

etc. (Version 0.5.12.)

• FcsOpener has transformed logarithmic values differently than flowCore [18].

The interpretation of the spillover matrix, hence implementation of compen-

sation was wrong. These errors were corrected after comparing the data in

different FCS files in FacsKin and in flowCore. These comparisons are now

done in the unit tests. (Version 0.5.13.)

• The interface of classes was described more precisely after testing, such as the

getData(int i) function in interface Data turned out not to return the data

that was added ith time, because data could have been rearranged inside. The

interface only ensures that all data that was added should be returned for some

i with getData(i) and nothing else should be returned. (Version 0.5.13.)

• Non-necessary functions were removed and algorithms were

simplified. For example, the “make values unique” function

was removed from class ProbabilityBinning and function

overlap(double[] highs, double[] lows) was made private in class

Statistics. (Version 0.5.13.)

FacsKin provided overall usable performance on an Intel Core Duo 1600 MHz

notebook with 2.5 GB of RAM using NixOS [25] and JRE 1.6.0_32 [20], the graph-

ical interface was responsible. Doing the GUI tests (Section 4.2.3.1) took about 20

minutes, running the unit tests (described in Section 4.2.3.2) took 98 seconds, and

all tests passed.

81

4.3 Caflux

Caflux is a text-based program implementing Section 2.1.2 of the specification.

4.3.1 System Plan

Caflux is put together from an R script (fct-64.R) some helper C functions

(dlogistx.c) and wrapper shell scripts providing an always-running failure-safe

daemon-like program. The overall structure of Caflux is described in Section 3.4.2.

Figure 3.28 shows how the different scripts work together and Tables 3.1 and 3.2

describe the purpose of every file distributed with Caflux.

The main design decisions for Caflux were the following:

• Separate the computer to which FacsKin uploads the measurements and the

computer that performs the analysis. This is done for security purposes so that

the machine which performs the critical analysis steps is not exposed directly

on the internet.

• Use the R environment [27] for analysis which provides tools for fitting func-

tions, transforming data, calculating quantiles etc.

• Use bash shell scripts to handle communication and separate them so that

every script has it’s own small job. This provides opportunity to parallelize

them.

fct-64.R script is a collection of functions performing the analysis steps as

described in Section 2.1.2.3. The data flow between functions is shown in Figure

4.15. The main function is caflux.analysis() which performs every step by calling

other functions. Step 3 is done for all 5 functions, and data is collected in a list of

function datas, one function data containing the name of the function, distribution

of parameters of the function, SAD (Sum of Absolute Deviation) and CV (10-fold

Cross Validation) values corresponding to the function. Fitting the functions is done

by R’s own optimization function, which needs starting values for each parameter.

These starting values are provided by the estimate.*.params() functions.

4.3.2 Implementation

To install Caflux, as it is distributed in source-based form, you need all libraries that

it uses, and you need to compile some parts (others run interpreted) as described

there in Section 3.4.1. The following packages and libraries are used:

82

Figure 4.15: Data flow between functions in fct-64.R. Numbers show which func-
tion(s) implement which step of phase 2 of specification (Section 2.1.2.3).

• R (package r-base in Ubuntu): fitting functions is done using R, we use

the following specific statistical functions: optim() (with methods “Nelder-

Mead” and “SANN”), lowess(), quantile(), two-dimensional array-indexing

functions which can seamlessly extract a row, a column or a specific set of

rows/columns, apply(), split(), sample(); functions we use for debugging

(creating diagrams): plot(), lines(); all other R functions used are for input-

output or easy to implement using other languages.

• libio-socket-ssl-perl is needed by sendMail which we use to send kinetics

files to the users.

• curlftpfs is used to access the FTP storage.

The first experiments with kinetic flow cytometry data were done using R, and

when the analysis algorithm matured [4] an easy-to-use GUI was developed in Java

around the main algorithm which was still implemented in R. Specifications for

communication between the Java and R parts were made (gated and kinetics files)

and the R calculations received a dedicated computer.

In fct-64.R the following global configurations are set:

83

• fct.names: a vector of strings (names of functions). Each corresponds to a

function implementing the mathematical function itself and an estimator func-

tion. fct.names and the corresponding functions are not completely separate

from the underlying algorithm because of efficiency reasons, that is, imple-

menting a new function needs also modifications in fit().

• n: the number of quantiles to fit a function to. This is set to 201 as given in the

specification (so that the median and quartiles have an exact quantile, namely

the 101th, 51th and 151th).

• lambda: during fitting, the sum of (abs(fittedValue − originalValue))lambda is

minimized. The default value is 1, which results in minimizing the sum of

absolute deviation.

• baseline.part.if.fixed: the implementation allows to fit a function with

the first part fixed to the median of the first baseline.part.if.fixed seconds.

To fit this way, the fix.starting=TRUE should be specified as a parameter

for function caflux.analysis().

The implementation matches the steps of the specification (Section 2.1.2.3):

1. Reading the gated file is done by function read.gated.file().

2. Before dividing the timeframe into intervals (function dividetime()) and cal-

culating quantiles (function quantiles.from.data()) we “retime” the events.

This is necessary because some flow cytometers export values using very low

time resolution: it can happen that 10,000 subsequent events have the same

time value. If the number of unique time values in the measurement is not

divisible by 100, it is possible that some time intervals have much more events

than others. To prevent this, we make (almost) all time values unique by the

following algorithm: if there are in average minimum 5 events with the same

measurement time we recalculate the time of the consecutive events having

same time value as if there were evenly distributed between their original time

plus delta where delta is the smallest time difference that exists between ar-

bitrary two events in the measurement.1

3. Each mathematical function has an own implementation, fct(x, p), where

x is the time value (which can be given as a vector providing multiple time

values) and p is a vector of the parameters. The parameter constraints are

kept using negation of parameters if needed. If the constraint is a > b where

1A previous attempt was that delta should be the next time point, but in this case if there is a
gap between data without any events, events would flow into this gap artificially.

84

a and b are two parameters and the function is called with parameters a ≤ b,

a and b are swapped inside the function. The real parameters (which are used

internally) can be extracted from the function by giving x=NULL as the first

parameter. If the function is called with p=NULL, it returns the number of

it’s parameters. For efficiency reasons, calculating the values of dlogistp and

dlogistn is implemented in C (dlogistx.c) and the R functions only act as

a wrapper.

(a) We start the SAD-optimization algorithm from different points so that

it could find the real minimum with higher chance. After each step, we

compare the produced SAD with the overall minimum and if it is less,

we store the parameter values (mindevi and par). We use the following

starting points and algorithms:

• Estimate the function parameters with lowess parameter f = 0.05

and use Nelder-Mead optimization method [9].

• Estimate the function parameters with lowess parameters f = 0.1,

f = 0.15, f = 0.35 and use Nelder-Mead optimization method.

• Estimate the function parameters with lowess parameter f = 0.05,

f = 0.1, f = 0.15, f = 0.2, f = 0.35 and use SANN optimization

method [1].

• Estimate the function parameters with lowess parameter f = 0.2 and

multiply the slope parameters by 0.01, 0.1, 1, 10 and 100, and start

the Nelder-Mead optimization method from each point (for functions

with two slope parameters this means 5 ∗ 5 = 25 starting points).

• Finally, we use one Nelder-Mead, one SANN and three more Nelder-

Mead optimization steps where the input of one step is the output

of the previous step.

(b) 10-fold Cross Validation [10] is a method for testing the goodness of fit of

a function to data by taking into account the phenomenon of overfit. A

good introduction to the method is [7]. Function cv10fold implements

it the following way: the input is n x and y values contained in data. We

randomly rearrange the sequence 〈1, 2, ..., n〉 (named s) and we take the

x and y values indexed by the first n/10 elements of s as the test set, the

rest will be the training set. Then we take the x and y values indexed by

the second n/10 elements of s as the test set, the rest as training set and

so on. In each step we fit the function to the training set, and calculate

the SAD value from the difference between the fitted function and the

test set. We sum up these SAD values to get the overall 10-fold CV value.

85

4. Writing the kinetics file is done by function write.kinetics.file().

Some functions have a parameter plot providing graphical debug output. Function

read.kinetics.file() is also for debugging and testing reasons.

4.3.2.1 Further Development

The security of Caflux could be increased by implementing a verification tool for

gated files (in C, for example) so that only real gated files are feeded into R. Security

flaws in R could be easily exploited using the current implementation. It would

further increase security to have all users upload with separate user names and

passwords to the FTP storage.

Function fit() in fct-64.R is currently very slow, it could be optimized but

only with strong testing guarantees so that a large pool of previously fitted test

functions fit just as well (in terms of SAD) with the faster implementation.

4.3.3 Testing

4.3.3.1 Unit Tests for fct-64.R

Unit tests for the functions in fct-64.R are implemented in test-64.R. To perform

the tests, issue the following commands:

time R --no-save <test-64.R

echo $?

gqview examples # look at the diagrams of fits

rm examples/test.*.png

If the second command gives 0, the tests ended successfully. If one of the tests

failed, error messages are printed during the tests and the second command gives a

non-zero value.

The following functions have separate test cases:

• read.gated.file(): we test reading reference data (which was created by

FacsKin, hence we also test the output of FacsKin).

• retime(): we test retiming with simple time values having/not having re-

peated values.

• cv10fold(): we test whether the test and training sets are separated well.

• fit(): we fit functions to example datasets contained in

examples/test.*.csv. We check whether the fit is good enough by

specifying limits to the distribution of SADs and we also output the functions

fitted in examples/test.*.*.png files.

86

• read.kinetics.file(), write.kinetics.file(): these are tested by the

same function. We check whether reading a kinetics file, writing the same

kinetics file out and reading it again results in the same kinetics data as the

original one.

Results: fct-64.R passed all unit tests. Running the test suite on an Intel Core

Duo 1600 MHz notebook with 2.5 GB of RAM using NixOS [25] took 12 minutes

and 23 seconds.

4.3.3.2 Common tests for FacsKin + Caflux

Testing the whole software is done as a regular maintenance step by the adminis-

trator of Caflux (Section 3.4.2). However, before giving effect to any modification of

Caflux the following test should be performed:

1. Launch FacsKin. For * in {1, 5, 10, 25}, “File/Open”

examples/*.baseline.fcs, “File/Append” *.PHA.fcs with a 30 sec-

onds gap, FSC-SSC gate for lymphocytes, histogram-gate for APC+ cells and

upload it using the kinetic parameter ratio “FITC-A/PerCP-Cy5-5-A” and

measurement name *_test.

2. Wait until the measurement results arrive by email.

3. Open the resulting kinetics files and also examples/*.kinetics (* in

{1, 5, 10, 25}).

4. Pair kinetics files so that the tests are the ones with *_test.kinetics filename

and the corresponding *.kinetics files are their pairs.

5. Perform pairing (without selecting “Use only median functions”). The starting

value, maximum value, ending value and AUC parameters should have very

low (close to 0) T(chi) values. The other parameters are not stable enough,

hence their values T(chi) values can be hifher.

This test was performed and the result was that maximum value, ending value

and AUC parameters were 0, while starting value was 0.889 and 15.346 in cases of

1_test.kinetics and 25_test.kinetics, respectively.

Powering off the computer should not result in data loss during analysis, the

interrupted analyses should automatically restart after the computer has been

restarted. This was tested and it worked as expected.

87

4.3.3.3 Performance of Caflux

Between 27th January 2011 and 13th May 2012 Caflux analyzed 1055 measure-

ments successfully on the same computer. 8 different caflux_fit processes were

running in parallel and sometimes the machine stopped because of power failure.

During this time 6 measurements ended up in the errors.data folder, out of which

5 were too small (the error was “Too many gaps in the experiment.” which means

less than 50 time values) and 1 was not successfully uploaded (it was possibly cor-

rupted during upload). Figure 4.16 shows the distribution of time for evaluating

one measurement. The median value is 6.197 hours, that is 24/6.197 ∗ 8 = 30.98

measurements could have been evaluated a day when working with full load. In 50%

of the cases the kinetics file was sent less than 4 hours after upload and in 90% of

the cases this took less than 11.4 hours. The maximum response time was 69 hours

(this probably corresponds to a power failure). There was no correlation between

analysis times and event count which suggests that analysis time depends more on

the shape of data than the size (see Figure 4.17; a Spearman rank-correlation test

was performed between analysis times and event counts, without significant effect:

p-value = 0.08184, ρ = −0.05508103. Only events with less than 19 hours of analysis

time were considered in the test).

Figure 4.16: Histogram of analysis times using Caflux.

88

Figure 4.17: Plot of analysis times vs. event count. Only cases when analysis time
was less than 19 hours are shown.

89

Bibliography

Journal articles and books

[1] Belisle, C. J. P. Convergence theorems for a class of simulated annealing algo-

rithms on Rd. J. Applied Probability. No. 29, 1992, pp. 885-895.

[2] Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P. A. (1983) Graph-

ical Methods for Data Analysis. Wadsworth & Brooks/Cole

[3] Hollander M and Wolfe DA. Nonparametric Statistical Methods. New York:

John Wiley & Sons, 1973, pp. 115-120.

[4] Kaposi AS, Veress G, Vásárhelyi B, Macardle P, Bailey S, Tulassay T, Treszl

A. Cytometry-acquired calcium-flux data analysis in activated lymphocytes.

Cytometry A. Volume 73, Issue 3, Mar 2008, pp. 246-53.

[5] Kaposi A, Toldi G, Mészáros G, Szalay B, Veress G, Vásárhelyi B. Experimen-

tal conditions and mathematical analysis of kinetic measurements using flow

cytometry - the FacsKin method. In: Flow Cytometry/Book 1. Schmid I (ed.).

Intech, 2012. ISBN 989-953-307-355-1. In press.

[6] Mészáros G, Szalay B, Toldi G, Kaposi A, Vásárhelyi B, Treszl A. Kinetic Mea-

surements Using Flow Cytometry: New Methods for Monitoring Intracellular

Processes. Assay Drug Dev Technol. Volume 10, Issue 1, Feb 2012, pp. 97-104.

[7] Moore, A. W. Cross-validation for detecting and preventing overfitting (presen-

tation). School of Computer Science, Carnegie Mellon University. URL: http:

//www.autonlab.org/tutorials/overfit10.pdf (accessed: 31 Mar 2012)

[8] Murphy RF, Chused TM. A proposal for a flow cytometric data file standard.

Cytometry, Volume 5, Issue 5, Sep 1984, pp. 553-5.

[9] Nelder, J. A. and Mead, R. A simplex algorithm for function minimization.

Computer Journal. No. 7, 1965, pp. 308-313.

90

http://www.autonlab.org/tutorials/overfit10.pdf
http://www.autonlab.org/tutorials/overfit10.pdf

[10] Picard R.R., Cook, R.D. Cross-Validation of Regression Models. Journal of

the American Statistical Association, Volume 79, Number 387, Sep 1984, pp.

575-583.

[11] Roederer, M., Treister, A., Moore, W., Herzenberg, L.A. Probability binning

comparison: a metric for quantitating univariate distribution differences. Cy-

tometry, Volume 45, Issue 1, Sep 2001, pp. 37-46.

[12] Roederer M. Spectral compensation for flow cytometry: Visualization artifacts,

limitations, and caveats. Cytometry A. Volume 45, Issue 3, Nov 2001, pp.

194–205.

[13] Seamer LC, Bagwell CB, Barden L, Redelman D, Salzman GC, Wood JC,

Murphy RF. Proposed new data file standard for flow cytometry, version FCS

3.0. Cytometry. Volume 28, Issue 2, Jun 1997, pp. 118-22.

Websites

[14] Apple Inc.: http://www.apple.com (accessed: 31 Mar 2012)

[15] BD FACSDiva Software, BD Biosciences, 2350 Qume Drive, San Jose, Califor-

nia, USA 95131. http://www.bdbiosciences.com/instruments/software/

facsdiva (accessed: 31 Mar 2012)

[16] FCS format Version 3.1: http://isac-net.org/

Resources-for-Cytometrists/Data-Standards/Data-File-Standards/

Flow-Cytometry-Data-File-Format-Standards.aspx (accessed: 31 Mar

2012)

[17] Flow Cytometry on Wikipedia: http://en.wikipedia.org/wiki/Flow_

cytometry (accessed: 31 Mar 2012)

[18] flowCore R package: http://bioconductor.org/packages/2.2/bioc/html/

flowCore.html (accessed: 31 Mar 2012)

[19] FlowJo Software, Tree Star, Inc. 340 A Street #101. Ashland, Oregon, USA

97520. http://www.flowjo.com (accessed: 31 Mar 2012)

[20] Java, by Oracle Inc.: http://www.java.com (accessed: 31 Mar 2012)

[21] Java Web Start: http://docs.oracle.com/javase/6/docs/technotes/

guides/javaws/ (accessed: 31 Mar 2012)

91

http://www.apple.com
http://www.bdbiosciences.com/instruments/software/facsdiva
http://www.bdbiosciences.com/instruments/software/facsdiva
http://isac-net.org/Resources-for-Cytometrists/Data-Standards/Data-File-Standards/Flow-Cytometry-Data-File-Format-Standards.aspx
http://isac-net.org/Resources-for-Cytometrists/Data-Standards/Data-File-Standards/Flow-Cytometry-Data-File-Format-Standards.aspx
http://isac-net.org/Resources-for-Cytometrists/Data-Standards/Data-File-Standards/Flow-Cytometry-Data-File-Format-Standards.aspx
http://en.wikipedia.org/wiki/Flow_cytometry
http://en.wikipedia.org/wiki/Flow_cytometry
http://bioconductor.org/packages/2.2/bioc/html/flowCore.html
http://bioconductor.org/packages/2.2/bioc/html/flowCore.html
http://www.flowjo.com
http://www.java.com
http://docs.oracle.com/javase/6/docs/technotes/guides/javaws/
http://docs.oracle.com/javase/6/docs/technotes/guides/javaws/

[22] Department of Laboratory Medicine, Semmelweis University, Budapest, Hun-

gary. http://www.labmed.sote.hu (accessed: 31 Mar 2012)

[23] The Document Foundation LibreOffice: http://www.libreoffice.org (ac-

cessed: 31 Mar 2012)

[24] NetBeans: http://www.netbeans.org (accessed: 31 Mar 2012)

[25] NixOS Linux Distribution based on a lazy purily functional system configura-

tion management language: http://www.nixos.org (accessed: 31 Mar 2012)

[26] PNG format: http://en.wikipedia.org/wiki/Portable_Network_Graphics

[27] R Development Core Team (2012). R: A language and environment for statisti-

cal computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN

3-900051-07-0, URL http://www.R-project.org.

[28] Robert Green’s DIY website: http://www.rbgrn.net/content/

43-java-single-application-instance (accessed: 31 Mar 2012)

[29] SendEmail Perl script by Brandon Zehm. Distributed under GPL licence. http:

//caspian.dotconf.net/menu/Software/SendEmail (accessed: 31 Mar 2012)

[30] Ubuntu by Canonical Inc.: http://www.ubuntu.com (accessed: 31 Mar 2012)

[31] Windows by Microsoft Inc.: http://www.microsoft.com (accessed: 31 Mar

2012)

92

http://www.labmed.sote.hu
http://www.libreoffice.org
http://www.netbeans.org
http://www.nixos.org
http://en.wikipedia.org/wiki/Portable_Network_Graphics
http://www.R-project.org
http://www.rbgrn.net/content/43-java-single-application-instance
http://www.rbgrn.net/content/43-java-single-application-instance
http://caspian.dotconf.net/menu/Software/SendEmail
http://caspian.dotconf.net/menu/Software/SendEmail
http://www.ubuntu.com
http://www.microsoft.com

	Introduction
	The Task
	Specification
	Reading and selecting measurement data
	Input: FCS file
	Output: gated file
	Steps from FCS to gated

	Fitting functions
	Input: gated file
	Output: kinetics file
	Steps from gated to kinetics

	Comparing measurements

	Analysis of Requirements
	Communication with other programs
	Runtime Environment
	Requirements for goodness of the program
	Speed
	Accessibility
	Maintanance and failure handling
	Security

	User Documentation
	Program Structure
	FacsKin step-by-step User's Guide
	Acquiring measurement data
	Starting FacsKin
	Launch with Java Web Start
	Launch from the ZIP bundle

	Opening and gating FCS files
	Uploading gated data
	Receiving .kinetics file as email attachment
	Opening different .kinetics files and selecting a common function
	Detailed description of the functions

	Creating groups and comparing parameters of the selected function in different groups
	Exporting comparison data
	Pairing measurements

	Maintenance of FacsKin
	Caflux User's Guide
	Installation
	Maintenance
	Uninstallation

	Developer Documentation
	Structure
	FacsKin
	System Plan
	User Interface
	Table models
	Plots
	Data Containers
	Input/Output
	Math classes
	Error handling

	Implementation
	Version History
	Further Development
	Interesting Algorithms
	Compilation and Distribution

	Testing
	Tests using the GUI
	Unit tests
	Test results

	Caflux
	System Plan
	Implementation
	Further Development

	Testing
	Unit Tests for fct-64.R
	Common tests for FacsKin + Caflux
	Performance of Caflux

	Bibliography
	Journal articles and books
	Websites

