
Second-order generalised algebraic theories:1

signatures and first-order semantics2

Ambrus Kaposi #3

Eötvös Loránd University, Budapest, Hungary4

Szumi Xie #5

Eötvös Loránd University, Budapest, Hungary6

Abstract7

Programming languages can be defined from the concrete to the abstract by abstract syntax trees,8

well-scoped syntax, well-typed (intrinsic) syntax, algebraic syntax (well-typed syntax quotiented by9

conversion). Another aspect is the representation of binding structure for which nominal approaches,10

De Bruijn indices/levels and higher order abstract syntax (HOAS) are available. In HOAS, binders11

are given by the function space of an internal language of presheaves. In this paper, we show how to12

combine the algebraic approach with the HOAS approach: following Uemura, we define languages13

as second-order generalised algebraic theories (SOGATs). Through a series of examples we show14

that non-substructural languages can be naturally defined as SOGATs. We give a formal definition15

of SOGAT signatures (using the syntax of a particular SOGAT) and define two translations from16

SOGAT signatures to GAT signatures (signatures for quotient inductive-inductive types), based on17

parallel and single substitutions, respectively.18

2012 ACM Subject Classification Theory of computation → Type theory19

Keywords and phrases Type theory, universal algebra, inductive types, quotient inductive types,20

higher-order abstract syntax, logical framework21

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2322

1 Introduction23

The traditional way of defining a programming language comprises of a BNF-style description24

of abstract syntax trees, a typing relation and a reduction or conversion relation [46, 47, 51].25

If instead the syntax is defined using well-scoped syntax trees [33, 26, 3], bound names do26

not matter: for example, one cannot distinguish 𝜆𝑥.𝑥 and 𝜆𝑦.𝑦 anymore. A higher level27

representation is given by intrinsic (well-typed) terms [9, 51] where one merges the syntax28

and the typing relation: non well-typed terms are not expressable in such a representation.29

The next level of abstraction is when well-typed terms are quotiented by the conversion30

relation: this is especially convenient for dependently typed languages where typing depends31

on conversion [7]. Here one can only define functions on the syntax that preserve conversion:32

a simple printing function is not definable, but normalisation [6, 19], typechecking [34] or33

parametricity [7] preserve conversion, so they can be defined on the well-typed quotiented34

syntax. The well-typed quotiented syntax is also concordant with the semantics: there is no35

reason to have a separate definition of syntax and a different notion of semantics, but the36

syntax can be simply defined as the initial model, which always exists for any generalised37

algebraic theory (GAT) [38]. Thus, abstractly, a language is simply a GAT.38

Another aspect of the definition of a language is the treatment of bindings and variables:39

one can use De Bruijn indices to make sure that choices of names do not matter, but40

then substitution has to be part of the syntax, for example in the form of a category with41

families [18]. Logical frameworks [28, 45] and higher-order abstract syntax (HOAS) [31]42

provide another way to implement bindings and variables: they use the function space of the43

metatheory. For example, the type of the lambda operation in the pure lambda calculus is44

© Ambrus Kaposi and Szumi Xie;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:akaposi@inf.elte.hu
https://orcid.org/0000-0001-9897-8936
mailto:szumi@inf.elte.hu
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Second-order generalised algebraic theories: signatures and first-order semantics

simply the second-order function space (Tm → Tm) → Tm. The justification of HOAS is the45

type-theoretic internal language of presheaves over the category of contexts and syntactic46

substitutions [31]. In this internal language, lambda indeed has the above type. This internal47

language viewpoint can also be used to define languages: in this case a language with48

bindings is not a GAT, but a second-order generalised algebraic theory (SOGAT), which49

allows second-order (but not general higher-order) operations. While untyped or simply50

typed languages were defined as second-order theories before [22, 20, 2], SOGATs were first51

used by Uemura [50] for defining languages with bindings. The step from second-order52

algebraic theories to SOGATs is a big one: it is analogous to the step from inductive types53

to inductive-inductive types [39], which is difficult, e.g. inductive-inductive types are still not54

supported by Coq. The SOGAT definition of a language can be even more abstract than the55

well-typed quotiented definition: the SOGAT does not mention contexts or substitutions:56

these can be seen as boilerplate that should be automatically generated. SOGATs are not57

well-behaved algebraic theories, for example, there is no meaningful notion of homomorphism58

of second-order models. To describe first order models, homomorphisms or the notion of59

syntax for a SOGAT, we turn it into a GAT. In this process we introduce new sorts for60

contexts and substitutions, we index every operation with its context, and the second-order61

function spaces become first order using this context indexing. The thus obtained GAT has62

some “correctness by construction” properties, for example, every operation automatically63

preserves substitution. For complicated theories, this property is not trivial if we do not start64

from a SOGAT, but try to work with the lower level GAT presentation directly. Cubical type65

theory [49] and a type theory with internal parametricity [5] have been presented as SOGATs,66

and methods were developed to prove properties of type theories at the SOGAT level of67

abstraction [48, 15]. Substructural (e.g. linear or modal) type theories are not definable as68

SOGATs using the method described in this paper, but sometimes the internal language of69

presheaves over a substructural theory provides a substructural internal language which can70

be used to describe the theory as in the case of multi-modal type theory [25].71

Simple algebraic theories can be presented using signatures and equations, or presentation-72

independently as Lawvere theories. GATs have syntactic signatures defined using preterms73

and well-formedness relations [17], and they can be described presentation-independently74

as contextual categories [17], categories with families (CwFs) or clans [23]. The “theory of75

signatures” (ToS) approach [38] is halfway between the syntactic and presentation-independent76

approaches: here signatures are defined by the syntax of a particular GAT, which is a domain-77

specific type theory designed for defining signatures. Signatures look exactly as we write78

inductive datatype definitions in a proof assistant like Agda: a list (telescope) of the curried79

types of sorts and constructors. A signature in the ToS is a concrete presentation of a theory,80

but it is given at the level of abstraction of well-typed quotiented syntax. This allows elegant81

semantic constructions [41], while still working directly with signatures. SOGATs again can82

be defined syntactically [50] or presentation-independently as representable map categories83

[50] or CwFs with locally representable types [13], and the current paper contributes the84

ToS style definition of SOGATs. In fact, the theory of SOGAT signatures is itself a SOGAT85

which can describe itself. Circularity is avoided because we bootstrap the theory of SOGAT86

signatures by first defining it as a GAT, and the theory of GAT signatures (which is the87

syntax of a GAT) can itself be bootstrapped using a Church-encoding [40].88

Contributions. The main takeaway of this paper is that structural languages are SOGATs.89

We justify this claim through several examples. Our technical contributions are the following:90

The theory of SOGAT signatures (ToS+), a domain-specific type theory in which every91

closed type is a SOGAT signature. As it is a structural type theory, it can be defined as92

A. Kaposi and Sz. Xie 23:3

a SOGAT itself. Signatures can be formalised in ToS+ without encoding overhead.93

A translation from SOGAT signatures to GAT signatures based on a parallel substitution94

calculus. Thus, for every SOGAT, we obtain all of the semantics of GATs: a category of95

models with an initial object, (co)free models, notions of displayed models and sections,96

the fact that induction is equivalent to initiality, and so on. The GAT descriptions that97

we obtain are readable, do not contain occurrences of Yoneda as in usual presheaf function98

spaces. Correctness of the translation is showed by proving that internally to presheaves99

over a model of the GAT, a second-order model of the SOGAT is available.100

We define an alternative translation producing a single substitution calculus.101

Structure of the paper. In Section 2, we walk through examples of languages defined as102

second-order algebraic theories (SOGATs) including (simply typed) combinator calculus,103

(simply typed) lambda calculus, first-order logic, Martin-Löf type theory. We list more104

examples in Appendix A. We explain what the SOGAT → GAT translation will give for105

each example. In Section 3, we define languages for describing algebraic theories, culminating106

in the theory of SOGAT signatures (ToS+). A SOGAT is simply a closed type in the syntax107

of ToS+. Then we define the SOGAT → GAT translation in three iterations: Section 4108

presents a naive notion of model which is obviously correct, but has lots of encoding overhead.109

Section 5 defines an isomorphic notion of model with less encoding overhead. The final110

translation is defined in Section 6. Section 7 discusses open and infinitary signatures, and111

explains the single substitution calculus variant. Section 8 concludes.112

Related work. The “theory of signatures” (ToS) approach was introduced by Kaposi and113

Kovács [37] for a higher variant of GATs (higher inductive-inductive types), and was used to114

describe ordinary [38] and infinitary [40] GATs (quotient inductive-inductive types). The115

thesis of Kovács [41] summarises and generalises these results, in particular, it provides116

semantics internal to any category with families (CwF) using the semantic setting of two-level117

type theory [4, 10]. The current paper extends this work with second-order operations.118

The ToS that we use differs from the one in Kovács’ thesis by including Σ types and being119

presented as a SOGAT itself. This has the advantage that we do not have to deal with De120

Bruijn indices when giving formal signatures. A version of ToS+ with two fixed sorts of types121

and terms was given in the HoTTeST talk by Kaposi [35].122

Direct precursors of our work are Hofmann’s analysis of higher-order abstract syntax123

(HOAS) [31] and Capriotti’s rule framework [16]. Syntactic definitions of SOGATs are given124

in Uemura’s thesis [50] and Harper’s equational logical framework [27]. A syntactic definition125

of type theories (SOGATs with two fixed sorts: types and terms) is described by Bauer126

and Haselwater [29] based on earlier work [12]. Presentation-independent definitions of127

SOGATs are representable map categories by Uemura [50] and CwFs with a sort of locally128

representable types (CwF+) [14]. The presentation-independent ways define models using129

functorial semantics, while the ToS approach defines semantics of GATs by induction on130

the signature. Functorial semantics for our SOGAT signatures is as follows: every SOGAT131

signature Ω gives rise to the free CwF+ over Ω (the slice of the theory of SOGAT signatures132

over Ω). Now a model is a category C together with a CwF+-morphism from this CwF+ to133

the CwF+ of presheaves over C.134

Our two different ways of translating SOGATs to GATs roughly correspond to Voevodsky’s135

two different descriptions of the substitution calculus for dependent type theory: B-systems136

correspond to single substitutions, C-systems to parallel substitutions. B-systems and C-137

systems are equivalent [1], however our single substitution calculus is more minimalistic, and138

has more models than the parallel substitution calculus.139

CVIT 2016

23:4 Second-order generalised algebraic theories: signatures and first-order semantics

In this paper we explain how to define languages as SOGATs and then translate them into140

GATs. Then, the induction principle of the GAT can be used to prove properties of the syntax.141

However, certain metatheoretic proofs can be described at the level of SOGATs avoiding142

mentioning contexts or substitutions. Synthethic Tait computability [48] and internal sconing143

[15] are techniques for this. We leave adapting them to ToS+ as future work.144

Metatheory and notation. Our metatheory is extensional type theory with uniqueness of145

identity proofs, we use Agda-like notation with implicit arguments sometimes omitted. We146

write function application as juxtaposition, the universe of types is denoted Set𝑖, we usually147

omit the level subscripts. We use infix Σ type notation using ×, the single element of the148

singleton type 𝟙 is denoted ∗. Sometimes we work in the internal language of a presheaf149

category using the same notations, in the style of two-level type theory [4, 10].150

2 Classes of algebraic theories through examples151

In this section, we walk through examples of logic and programming languages defined as152

algebraic theories: we define a single-sorted algebraic theory (AT), a generalised algebraic153

theory (GAT), a second-order algebraic theory (SOAT) and multiple second-order generalised154

algebraic theories (SOGATs). GATs include typing information compared to ATs, SOATs155

include binders, while SOGATs combine these two aspects.156

Algebraic theories. Combinator calculus is an algebraic theory (AT) with a single sort157

of terms, one binary, two nullary operations and two equations. We denote its signature158

as follows (unlike usual presentations of algebraic theories, we include the equations in the159

notion of signature, because for generalised algebraic theories separation is not possible).160

▶ Definition 1 (Schönfinkel’s combinator calculus).

Tm : Set K : Tm K𝛽 : K · 𝑢 · 𝑓 = 𝑢161

– · – : Tm → Tm → Tm S : Tm S𝛽 : S · 𝑓 · 𝑔 · 𝑢 = 𝑓 · 𝑢 · (𝑔 · 𝑢)162

The notion of algebra/model is evident from this signature. The quotiented syntax of163

combinator calculus is the initial model, which always exists. Notions of homomorphism,164

displayed/dependent model, induction, products and coproducts of models, free models, and165

so on, are derivable from the signature, as described in any book on universal algebra. The166

initial algebra of an AT is called a quotient inductive type [21].167

Single-sorted algebraic theories from logic are classical (or intuitionistic) propositional168

logic defined as the theory of Boolean algebras (or Heyting algebras). Examples from algebra169

are monoids, groups, rings, lattices, and so on.170

Generalised algebraic theories. Generalised algebraic theories (GATs) allow sorts indexed171

by other sorts. Examples are typed combinator calculus and propositional logic with Hilbert-172

style proof theory, theories of graphs, preorders, categories, and so on.173

▶ Definition 2 (Typed combinator calculus).

Ty : Set K : Tm (𝐴⇒ 𝐵 ⇒ 𝐴)174

Tm : Ty → Set S : Tm
(
(𝐴⇒ 𝐵 ⇒ 𝐶) ⇒ (𝐴⇒ 𝐵) ⇒ 𝐴⇒ 𝐶

)
175

𝜄 : Ty K𝛽 : K · 𝑢 · 𝑓 = 𝑢176

– ⇒ – : Ty → Ty → Ty S𝛽 : S · 𝑓 · 𝑔 · 𝑢 = 𝑓 · 𝑢 · (𝑔 · 𝑢)177

– · – : Tm (𝐴⇒ 𝐵) → Tm 𝐴→ Tm 𝐵178

A. Kaposi and Sz. Xie 23:5

We have a sort of types, and for each type, a separate sort of terms of that type. Now the K179

and S operations are nullary only in the sense that they don’t take Tm arguments, but they180

still take two and three Ty arguments, respectively. For readability, these are given implicitly.181

Similarly, application – · – takes the arguments 𝐴 and 𝐵 implicitly.182

The above mentioned universal algebraic features of ATs generalise to GATs [41]. In183

particular, each GAT has a syntax given as a quotient inductive-inductive type [38], we have184

free models [41] and cofree models [43]. If the language has variables or binders, we will185

define it as a second-order theory.186

Second-order algebraic theories. The SOAT of lambda calculus is the following.187

▶ Definition 3 (Lambda calculus).

Tm : Set lam : (Tm → Tm) → Tm – · – : Tm → Tm → Tm 𝛽 : lam 𝑓 · 𝑢 = 𝑓 𝑢188

The type of lam is not first-order (not strictly positive), hence this is not an algebraic theory189

anymore. It is clear what a second-order model is (a set with a binary operation and a190

second-order function with the type of lam satisfying the equation 𝛽). However, we do not191

have a usable notion of homomorphism between second-order models 𝑀 and 𝑁: this would be192

a function 𝛼 : Tm𝑀 → Tm𝑁 such that 𝛼 (𝑡 ·𝑀 𝑢) = 𝛼 𝑡 ·𝑁 𝛼 𝑢 and 𝛼 (lam𝑀 𝑓) = lam𝑁 (𝛼◦ 𝑓 ◦?),193

but we don’t know what to put in place of the ?. To talk about homomorphisms or the194

syntax, we translate the SOAT to a first-order GAT: we add contexts, substitutions, index195

Tm and all operations by contexts and then lam becomes a first order function taking a term196

in an extended context as input. The resulting GAT is the following.197

▶ Definition 4 (Lambda calculus as a first-order GAT).

Con : Set [id] : 𝑡 [id] = 𝑡198

Sub : Con → Con → Set – ⊲ : Con → Con199

– ◦ – : Sub ∆ Γ → Sub Θ ∆ → Sub Θ Γ – , – : Sub ∆ Γ → Tm ∆ → Sub ∆ (Γ ⊲)200

ass : (𝛾 ◦ 𝛿) ◦ 𝜃 = 𝛾 ◦ (𝛿 ◦ 𝜃) p : Sub (Γ ⊲) Γ201

id : Sub Γ Γ q : Tm (Γ ⊲)202

idl : id ◦ 𝛾 = 𝛾 ⊲𝛽1 : p ◦ (𝛾, 𝑡) = 𝛾203

idr : 𝛾 ◦ id = 𝛾 ⊲𝛽2 : q[𝛾, 𝑡] = 𝑡204

⋄ : Con ⊲𝜂 : 𝜎 = (p ◦ 𝜎, q[𝜎])205

𝜖 : Sub Γ ⋄ – · – : Tm Γ → Tm Γ → Tm Γ206

⋄𝜂 : (𝜎 : Sub Γ ⋄) → 𝜎 = 𝜖 ·[] : (𝑡 · 𝑢) [𝛾] = 𝑡 [𝛾] · (𝑢[𝛾])207

Tm : Con → Set lam : Tm (Γ ⊲) → Tm Γ208

– [–] : Tm Γ → Sub ∆ Γ → Tm ∆ lam[] : (lam 𝑡) [𝛾] = lam (𝑡 [𝛾 ◦ p, q])209

[◦] : 𝑡 [𝛾 ◦ 𝛿] = 𝑡 [𝛾] [𝛿] 𝛽 : lam 𝑡 · 𝑢 = 𝑡 [id, 𝑢]210

In more detail: the GAT starts with a category with a terminal object (Con, . . . , ⋄𝜂), then211

we have the sort Tm which is now indexed by Con and comes with an instantiation operation212

– [–] which is functorial. There is a context extension – ⊲ which makes contexts a natural213

number algebra (with zero ⋄ and successor – ⊲). Substitutions are lists of terms, this is214

expressed by the isomorphism p ◦ – , q[–] : Sub ∆ (Γ ⊲) � Sub ∆ Γ × Tm ∆ : – , –. Now215

variables are definable as De Bruijn indices: 0 = q, 1 = q[p], 2 = q[p] [p], and so on. The216

operations – · – and lam are also (implicitly) indexed by contexts and come equipped with217

substitution laws (·[] and lam[]). The function in the input of the SOAT presentation of lam218

CVIT 2016

23:6 Second-order generalised algebraic theories: signatures and first-order semantics

becomes a Tm in an extended context. In lam[], the substitution (𝛾 ◦ p, q) : Sub (∆ ⊲) (Γ ⊲)219

is the lifting of 𝛾 : Sub ∆ Γ which does not touch the last variable bound by lam. Finally,220

the metatheoretic function application on the right hand side of the 𝛽 law in the SOAT221

presentation becomes an instantiation of the last variable by (id, 𝑢) : Sub Γ (Γ ⊲).222

In the special case of the lambda calculus, there are equivalent simpler GATs, but this is223

the one which is generated by the translation of Section 6. Our translation works generically,224

hence it does not necessarily give the most minimal GAT presentation.225

By the syntax of lambda calculus, we mean the syntax for the above GAT. However,226

we still prefer to define lambda calculus as a SOGAT: it is a shorter definition, does not227

include boilerplate, and ensures that once translated to its first-order version, all operations228

respect substitution by construction. Also, we can do programming using the second-order229

representation in the style of logical frameworks. This means that using the second-order230

presentation, we can define derivable operations and prove derivable equations as opposed to231

admissible ones for which we would need induction. An example of a derivable operation is232

the Y combinator: we assume a second-order model of the lambda calculus given by Tm,233

lam, – · –, 𝛽, and define Y := lam𝜆 𝑓 .
(
lam𝜆𝑥. 𝑓 · (𝑥 · 𝑥)

)
·
(
lam𝜆𝑥. 𝑓 · (𝑥 · 𝑥)

)
. We prove that234

this is indeed a fixpoint combinator as follows.235

Y · 𝑓 =
(
lam𝜆 𝑓 .

(
lam𝜆𝑥. 𝑓 · (𝑥 · 𝑥)

)
·
(
lam𝜆𝑥. 𝑓 · (𝑥 · 𝑥)

))
· 𝑓 = (𝛽)236 (

lam𝜆𝑥. 𝑓 · (𝑥 · 𝑥)
)
·
(
lam𝜆𝑥. 𝑓 · (𝑥 · 𝑥)

)
= (𝛽)237

𝑓 ·
((

lam𝜆𝑥. 𝑓 · (𝑥 · 𝑥)
)
·
(
lam𝜆𝑥. 𝑓 · (𝑥 · 𝑥)

))
= 𝑓 · (Y · 𝑓)238

This kind of reasoning makes sense for any second-order model, and any first-order model239

gives rise to a second-order model in the internal language of presheaves over the first-order240

model, see Corollary 25.241

Second-order generalised algebraic theories. SOGATs combine the two previous classes:242

sorts can be indexed over previous sorts and second-order operations are allowed. In the243

following examples, we write f : A ↔ B : g for f : A → B and g : B → A, we write A � B for244

A ↔ B with two equations 𝛽 : g (f 𝑎) = 𝑎 and 𝜂 : f (g 𝑏) = 𝑏. We write A : Prop for A : Set245

together with an equation irr : (𝑎 𝑎′ : A) → 𝑎 = 𝑎′. We list the theories as SOGATs, and246

discuss the interesting aspects of their first-order models.247

▶ Definition 5 (Simply typed lambda calculus).

Ty : Set Tm : Ty → Set248

– ⇒ – : Ty → Ty → Ty lam : (Tm 𝐴→ Tm 𝐵) � Tm (𝐴⇒ 𝐵) : – · –249

An alternative popular description of simply typed lambda calculus is when we omit Ty and250

Tm, write a horizontal line or ⊢ for function space, give names to every input of a function251

(write (𝑎 : Tm 𝐴) → Tm 𝐵 instead of Tm 𝐴 → Tm 𝐵) and use named function application252

with square brackets (write 𝑡 [𝑥 ↦→ 𝑎] instead of 𝑡 𝑎, where 𝑡 : (𝑥 : 𝐴) → 𝐵[𝑥 ↦→ 𝑎], where253

𝐵 : (𝑥 : 𝐴) → Set).254

𝐴 𝐵

𝐴⇒ 𝐵

𝑥 : 𝐴 ⊢ 𝑏 : 𝐵
lam 𝑥.𝑏 : 𝐴⇒ 𝐵

𝑓 : 𝐴⇒ 𝐵 𝑎 : 𝐴
𝑓 · 𝑎 : 𝐵 (lam 𝑥.𝑏) · 𝑎 = 𝑡 [𝑥 ↦→ 𝑎]

𝑓 : 𝐴⇒ 𝐵

𝑓 = lam 𝑥. 𝑓 · 𝑥255

A first-order model of the simply typed lambda calculus contains a category with a terminal256

object (Con, Sub and the empty context ⋄), two sorts Ty and Tm which are both indexed by257

A. Kaposi and Sz. Xie 23:7

contexts, and there are context extension operations both for types and terms (we only list258

the relevant parts for reasons of space):259

Ty : Con → Set260

– [–]Ty : Ty Γ → Sub ∆ Γ → Ty ∆261

– ⊲Ty : Con → Con262

pTy ◦ – , qTy [–] : Sub ∆ (Γ ⊲Ty) � Sub ∆ Γ × Ty ∆ : – ,Ty –263

Tm : (Γ : Con) → Ty Γ → Set264

– [–]Tm : Tm Γ 𝐴→ (𝛾 : Sub ∆ Γ) → Tm ∆ (𝐴[𝛾]Ty)265

– ⊲Tm – : (Γ : Con) → Ty Γ → Con266

pTm ◦ – , qTm [–] : Sub ∆ (Γ ⊲Tm 𝐴) � (𝛾 : Sub ∆ Γ) × Tm ∆ (𝐴[𝛾]Ty) : – ,Tm –267

The context extension operations take as arguments the index of the corresponding sort: Ty268

is not indexed, so ⊲Ty does not take any arguments, ⊲Tm takes a Ty argument. In simply269

typed lambda calculus, none of the operations (or sorts) use type variables, hence it is not270

necessary to include the operation ⊲Ty and the type variables qTy, qTy [p], qTy [p] [p], and so271

on. In the formal version of signatures (Definition 10), we will distinguish those sorts which272

have variables and those which do not, so this optimisation can be handled by our setup.273

The fact that all types are closed (don’t depend on term variables, hence do not depend274

on the context at all) will not be handled by our translation, so the generated theory will275

include unnecessary dependencies, and a by hand optimisation step is needed to replace276

Ty : Con → Set by Ty : Set and removing the – [–]Ty operation. The operations in the notion277

of first-order model are the typed versions of the operations in Definition 4, for example278

lam : Tm (Γ ⊲Tm 𝐴) 𝐵 → Tm Γ (𝐴⇒ 𝐵). This concludes the typed lambda calculus example.279

The following definition of first-order logic has minimal amount of logical connectives,280

but illustrates the general idea. The proof theory that comes with it is natural deduction281

style, it can be also written following the above conventions using horizontal lines and ⊢.282

▶ Definition 6 (Minimal intuitionistic first-order logic).

For : Set Pf : For → Prop283

Tm : Set intro⊃ : (Pf 𝐴→ Pf 𝐵) ↔ Pf (𝐴 ⊃ 𝐵)284

– ⊃ – : For → For → For intro∀ :
(
(𝑡 : Tm) → Pf (𝐴 𝑡)

)
↔ Pf (∀𝐴)285

∀ : (Tm → For) → For introEq : Pf (Eq 𝑡 𝑡)286

Eq : Tm → Tm → For elimEq : (𝐴 : Tm → For) → Pf (Eq 𝑡 𝑡′) →287

Pf (𝐴 𝑡) → Pf (𝐴 𝑡′)288

A first-order model contains a category of contexts and substitutions equipped with three289

different kinds of context extension corresponding to three different kinds of variables. This290

means that there are three different 0 De Burijn indices (qFor, qTm qPf), nine different 1291

De Bruijn indices (qFor [pFor]For, qFor [pTm]For, qFor [pPf]For, . . . , qPf [pPf]Pf). In general, De292

Bruijn index 𝑛 has 3𝑛+1 variants. We list the types of the binders:293

∀ : For (Γ ⊲Tm) → For Γ294

intro⊃ : Pf (Γ ⊲Pf 𝐴) (𝐵[pPf]For) → Pf Γ (𝐴 ⊃ 𝐵)295

intro∀ : Pf (Γ ⊲Tm) 𝐴→ Pf Γ (∀𝐴)296

elimEq :
(
𝐴 : For (Γ ⊲Tm)

)
→ Pf Γ (Eq 𝑡 𝑡′) → Pf Γ (𝐴[id ,Tm 𝑡]For) → Pf Γ (𝐴[id ,Tm 𝑡

′]For)297

CVIT 2016

23:8 Second-order generalised algebraic theories: signatures and first-order semantics

The GAT presentation of first-order logic can be simplified by removing For variables as298

no operations bind formulas. Another post-hoc simplification is separating the Tm-variable299

contexts and the Pf-variable contexts which depend on the former. After such a separation,300

it is possible to define [11] the syntax of first-order logic simply using inductive types and301

avoiding quotienting (with the exception of Pf where we use a full quotient which can be302

implemented by SProp of Agda or Coq [24]). One reason for being able to do this is that the303

above SOGAT does not have any equations, but this is not enough in general. For example, if304

we do not have quotients, it does not seem to be possible to define the syntax of a Martin-Löf305

type theory which does not have computation rules.306

Our next example is a theory with dependent types featuring Π types, a Coquand-universe307

(which forces types to be indexed by levels) and a lifting operation. This is an open signature308

which means that it refers to some external types, in this case a natural number algebra (we309

can make it closed by adding N as a new sort and 0 and 1 + – as new operations).310

▶ Definition 7 (Minimal Martin-Löf type theory).

Ty : N→ Set U : (𝑖 : N) → Ty (1 + 𝑖)311

Tm : Ty 𝑖 → Set c : Ty 𝑖 � Tm (U 𝑖) : El312

Π : (𝐴 : Ty 𝑖) → (Tm 𝐴→ Ty 𝑖) → Ty 𝑖 Lift : Ty 𝑖 → Ty (1 + 𝑖)313

lam : ((𝑎 : Tm 𝐴) → Tm (𝐵 𝑎)) � Tm (Π 𝐴 𝐵) : – · – mk : Tm 𝐴 � Tm (Lift 𝐴) : un314

The first-order translation of this theory results in a category with families (CwF [18]), more315

precisely, a category with N-many families equipped with familywise Π-types, universes and316

a one-step upwards lifting between the families. The sorts are Ty : Con → N → Set and317

Tm : (Γ : Con) → Ty Γ 𝑖 → Set, the 𝑖 argument is implicit in the latter.318

Instead of a Coquand-universe with c and El, we could have defined a Russell universe319

where we have a sort equality Ty 𝑖 = Tm (U 𝑖), and we also have the option to do this for320

lifting and Π types. The first-order semantics of such a theory has the following equalities:321

Ty Γ 𝑖 = Tm Γ (U 𝑖), and having strict Π types means Tm (Γ ⊲ 𝐴) 𝐵 = Tm Γ (Π 𝐴 𝐵).322

3 Theories of signatures as SOGATs323

In this section we define three languages which describe signatures for ATs, GATs and324

SOGATs, respectively. All three languages are given as SOGATs.325

The theory of signatures for ATs is a dependent type theory without a universe, it has326

one base type Srt for the (single) sort, Σ types, a Π type with fixed Srt domain, and an327

equality type. Π types are equipped with application, but the Σ and Eq types don’t have328

constructors or destructors, because those are not needed when defining signatures.329

▶ Definition 8 (Signatures for single-sorted algebraic theories).

Ty : Set ΠSrt : (Tm Srt → Ty) → Ty330

Tm : Ty → Set – · – : Tm (ΠSrt 𝐵) → (𝑥 : Tm Srt) → Tm (𝐵 𝑥)331

Σ : (𝐴 : Ty) → (Tm 𝐴→ Ty) → Ty Eq : Tm Srt → Tm Srt → Ty332

Srt : Ty333

A first-order model of this theory is a CwF with type formers Σ, Srt, ΠSrt, Eq and a term334

former – · – : Tm Γ (ΠSrt 𝐵) → (𝑥 : Tm Γ Srt) → Tm Γ (𝐵[id, 𝑥]). An element of Ty in the335

syntax of this language is an AT signature. We introduce abbreviations Srt⇒ 𝐴 := ΠSrt𝜆_.𝐴336

and 𝐴 × 𝐵 := Σ 𝐴𝜆_.𝐵. The signature for combinator calculus is the following Ty:337

A. Kaposi and Sz. Xie 23:9

Σ (Srt⇒Srt⇒Srt) 𝜆𝑎𝑝.Σ Srt𝜆𝐾.Σ Srt𝜆𝑆.
(
ΠSrt𝜆𝑢.ΠSrt𝜆 𝑓 .Eq

(
𝑎𝑝 · (𝑎𝑝 · 𝐾 · 𝑢) · 𝑓

)
𝑢

)
338

×
(
ΠSrt𝜆 𝑓 .ΠSrt𝜆𝑔.ΠSrt𝜆𝑢.Eq

(
𝑎𝑝 ·

(
𝑎𝑝 · (𝑎𝑝 · 𝑆 · 𝑓) · 𝑔

)
· 𝑢

) (
𝑎𝑝 · (𝑎𝑝 · 𝑓 · 𝑢) · (𝑎𝑝 · 𝑔 · 𝑢)

))
339

This can be seen as a more explicit version of Definition 1: we use Σ types instead of a340

newline-separated list, we use the metatheoretic 𝜆 binder to give names to operations, we341

use an explicit · operation for application and write Eq instead of =. Moreover, we don’t342

have infix operators or implicit arguments, the three arguments of equation K𝛽 and the four343

arguments of equation S𝛽 have to be introduced using ΠSrt explicitly. Being more explicit is344

needed to make sure that we describe an algebraic theory: for example, the fact that the345

domain of Π is fixed ensures strict positivity.346

The theory of GAT signatures (ToS) is a type theory with an empty universe (a type and347

a family over it), ⊤ and Σ types, equality with reflection, and a Π type with U-domain.348

▶ Definition 9 (ToS: the theory of GAT signatures).

Ty : Set Σ : (𝐴 : Ty) → (Tm 𝐴→ Ty) → Ty349

Tm : Ty → Set (– , –) : (𝑎 : Tm 𝐴) × Tm (𝐵 𝑎) � Tm (Σ 𝐴 𝐵) : fst, snd350

U : Ty Π : (𝑎 : Tm U) → (Tm (El 𝑎) → Ty) → Ty351

El : Tm U → Ty lam :
(
(𝑥 : Tm (El 𝑎)) → Tm (𝐵 𝑥)

)
� Tm (Π 𝑎 𝐵) : – · –352

⊤ : Ty Eq : (𝐴 : Ty) → Tm 𝐴→ Tm 𝐴→ Ty353

tt : 𝟙 � Tm Γ ⊤ refl : (𝑢 = 𝑣) � Tm (Eq 𝐴 𝑢 𝑣) : reflect354

The first-order version is Definition 11. A (presentation of a) GAT is defined as a closed type355

in the syntax of ToS. The only base type U is for declaring sorts, so a signature has to start356

with a sort, and then we can declare elements of the sort using El or functions where the357

input is a sort. For example, part of typed combinator calculus (Definition 2) is given by the358

following signature. We use the abbreviations 𝑎 ⇒ 𝐵 := Π 𝑎 𝜆_.𝑏 and 𝐴 × 𝐵 = Σ 𝐴𝜆_.𝐵. We359

left out the S combinator and its 𝛽 rule for reasons of space.360

ΣU𝜆𝑇𝑦.Σ (𝑇𝑦 ⇒ U) 𝜆𝑇𝑚.El𝑇𝑦 × Σ (𝑇𝑦 ⇒ 𝑇𝑦 ⇒ El𝑇𝑦) 𝜆𝑎𝑟𝑟.Σ361 (
Π 𝑇𝑦 𝜆𝐴.Π 𝑇𝑦 𝜆𝐵.𝑇𝑚 · (𝑎𝑟𝑟 · 𝐴 · 𝐵) ⇒ 𝑇𝑚 · 𝐴⇒ El (𝑇𝑚 · 𝐵)

)
𝜆𝑎𝑝𝑝.Σ362 (

Π 𝑇𝑦 𝜆𝐴.Π 𝑇𝑦 𝜆𝐵.El
(
𝑇𝑚 ·

(
𝑎𝑟𝑟 · 𝐴 · (𝑎𝑟𝑟 · 𝐵 · 𝐴)

)))
𝜆𝐾.Σ363 (

Π 𝑇𝑦 𝜆𝐴.Π 𝑇𝑦 𝜆𝐵.Π (𝑇𝑚 · 𝐴) 𝜆𝑢.Π (𝑇𝑚 · 𝐵) 𝜆 𝑓 .Eq
(
El (𝑇𝑚 · 𝐴)

)
364 (

𝑎𝑝𝑝 · (𝑎𝑟𝑟 · 𝐵 · 𝐴) · 𝐵 · (𝑎𝑝𝑝 · (𝑎𝑟𝑟 · 𝐴 · (𝑎𝑟𝑟 · 𝐵 · 𝐴)) · 𝐴 · 𝐾 · 𝑢) · 𝑓
)
𝑢

)
× . . .365

This type is a very explicit version of Definition 2: we use Σ, explicit application ·, no infix366

operators, no implicit arguments, and explicit El turning terms in U into types. We expect367

that an elaboration algorithm can turn Definition 2 into such an explicit version.368

For the theory of SOGAT signatures (ToS+), we add a new universe U+ of sorts for which369

variables are allowed: with the help of these we can write second order functions. U+ is a370

subuniverse of U (witnessed by el+) and has a Π type with U+-domain and U-codomain.371

▶ Definition 10 (ToS+: the theory of SOGAT signatures). We extend ToS with the following.372

U+ : Ty 𝜋+ : (𝑎+ : Tm U+) →
(
Tm

(
El (el+ 𝑎+)

)
→ Tm U

)
→ Tm U373

el+ : Tm U+ → Tm U lam+ :
(
𝑥 : El (el+ 𝑎+)

)
→ Tm (El (𝑏 𝑥)) � Tm

(
El (𝜋+ 𝑎+ 𝑏)

)
: – ·+ –374

CVIT 2016

23:10 Second-order generalised algebraic theories: signatures and first-order semantics

The first-order version is Definition 12. A (presentation of a) GAT is defined as a closed375

type in the syntax of ToS+. The signature for lambda calculus (Definition 3) is the following376

element of Ty.377

ΣU+ 𝜆𝑇𝑚.Σ
(
(𝑇𝑚 ⇒+ el+ 𝑇𝑚) ⇒ El (el+ 𝑇𝑚)

)
𝜆𝑙𝑎𝑚.Σ

(
el+ 𝑇𝑚 ⇒ el+ 𝑇𝑚 ⇒ El (el+ 𝑇𝑚)

)
𝜆𝑎𝑝𝑝.378

Π (𝑇𝑚 ⇒+ el+ 𝑇𝑚) 𝜆𝑡.Π (el+ 𝑇𝑚) 𝜆𝑢.Eq
(
El (el+ 𝑇𝑚)

) (
𝑎𝑝𝑝 · (𝑙𝑎𝑚 · 𝑡) · 𝑢

)
(𝑡 ·+ 𝑢)379

We have one sort 𝑇𝑚 for which variables are allowed, application 𝑎𝑝𝑝 uses ordinary function380

space ⇒ where 𝑇𝑚 has to be lifted by el+ from U+ to U. Lambda 𝑙𝑎𝑚 is defined as a381

second-order function where ⇒+ can appear on the left hand side of an ⇒. When stating382

the 𝛽 equation, note the two different application operators (· vs. ·+): ·+ is used when giving383

value to a variable. This becomes clear if we look at the first-order presentation of the 𝛽 law384

(last line in Definition 4, we write 𝑎𝑝𝑝 instead of · to avoid confusion): 𝑎𝑝𝑝 (lam 𝑡) 𝑢 = 𝑡 [id, 𝑢].385

So the semantics of · should be simply function application, while the semantics of ·+ is386

instantiation with a substitution. We give another illustration of this difference: in the387

above signature, the type of 𝑎𝑝𝑝 is el+ 𝑇𝑚 ⇒ el+ 𝑇𝑚 ⇒ El (el+ 𝑇𝑚), and this is translated to388

𝑇𝑚 Γ → 𝑇𝑚 Γ → 𝑇𝑚 Γ in the GAT version (see Definition 4). But we could have defined389

𝑎𝑝𝑝 as having type El (𝑇𝑚 ⇒+ 𝑇𝑚 ⇒+ 𝑇𝑚). In this case the GAT version of 𝑎𝑝𝑝 would be390

in 𝑇𝑚 (Γ ⊲ ⊲). Both variants are meaningful, and ToS+ allows the user to make a choice if she391

wants an operation with arguments, or an operation returning in an extended context. Note392

that both function spaces in the type of 𝑙𝑎𝑚 are forced to be ⇒+ and ⇒, respectively.393

Analogously, all SOGATs in Sections 2, 3 and Appendix A can be reified into SOGAT394

signatures (with the exception of Martin-Löf type theory which is an open signature, but we395

will rectify this in Section 7). This includes ToS+ itself.396

4 Naive semantics of SOGAT signatures397

In this section, for any SOGAT signature, we define a notion of first-order model. The idea398

is that a model is a category together with the presheaf interpretation of the signature over399

that category: the category of presheaves supports a universe, Π types, and so on, so we400

directly use these when interpreting the type formers of ToS+. We assume basic working401

knowledge of categories with families (CwFs [18]).402

▶ Definition 11 (First-order model of ToS). A first-order model of ToS is a CwF (sorts are403

denoted Con, Sub, Ty, Tm, context extension is – ⊲ – with p ◦ – , q[–] : Sub ∆ (Γ ⊲ 𝐴) � (𝛾 :404

Sub ∆ Γ) × Tm ∆ (𝐴[𝛾]) : – , –) equipped with:405

⊤ and Σ types given by isomorphisms406

tt : 𝟙 � Tm Γ ⊤, (– , –) : (𝑎 : Tm Γ 𝐴) ×Tm Γ (𝐵[id, 𝑎]) � Tm Γ (Σ 𝐴 𝐵) : fst, snd.407

A universe given by U : Ty Γ and El : Tm Γ U.408

A function space with domain in U, that is Π : (𝑎 : Tm Γ U) → Ty (Γ ⊲El 𝑎) → Ty Γ, with409

an isomorphism lam : Tm (Γ ⊲El 𝑎) 𝐵 � Tm Γ (Π 𝑎 𝐵) : app.410

A strict equality type Eq with reflection and uniqueness of identity proofs.411

All the operations listed above are natural in Γ.412

▶ Definition 12 (First-order model of ToS+). A first-order model of ToS+ is a first-order413

model of ToS equipped with:414

Another universe U+ : Ty Γ that is a subuniverse of U i.e. el+ : Tm Γ U+ → Tm Γ U.415

U is closed under functions with U+-domain, i.e. 𝜋+ : (𝑎+ : Tm Γ U+) → Tm
(
Γ ⊲El (el+ 𝑎+)

)
U →416

Tm Γ U with lam+ : Tm
(
Γ ⊲El (el+ 𝑎)

)
(El 𝑏) � Tm Γ

(
El (𝜋+ 𝑎+ 𝑏)

)
: app+.417

All the operations listed above are natural in Γ.418

A. Kaposi and Sz. Xie 23:11

▶ Problem 13 (PSh(C)). Presheaves over 𝐶 form a CwF equipped with ⊤, Σ types, an419

equality type with reflection, Π types and a Coquand-universe U with c : Ty Γ � Tm Γ U : El.420

Unlike in Definition 7, we omit writing universe indices for readibility.421

Construction. We recall the main parts of the construction [30] for fixing notations. Γ : Con422

is a presheaf, that is a family of sets Γ : C → Set with reindexing 𝛾𝐼 [𝑓]Γ : Γ 𝐽 for 𝛾𝐼 : Γ 𝐼 and423

𝑓 : C(𝐽, 𝐼) such that 𝛾𝐼 [𝑓 ◦ 𝑔]Γ = 𝛾𝐼 [𝑓]Γ [𝑔]Γ and 𝛾𝐼 [id]Γ = 𝛾𝐼 . A 𝜎 : Sub ∆ Γ is a function424

𝜎 : ∆ 𝐼 → Γ 𝐼 such that (𝜎 𝛿𝐼) [𝑓]Γ = 𝜎 (𝛿𝐼 [𝑓]∆). A type 𝐴 : Ty Γ is a dependent presheaf425

containing a family 𝐴 : (𝐼 : C) → Γ 𝐼 → Set with reindexing 𝑎𝐼 [𝑓]𝐴 : 𝐴 𝐽 (𝛾𝐼 [𝑓]Γ) for426

𝑎𝐼 : 𝐴 𝐼 𝛾𝐼 and 𝑓 : C(𝐽, 𝐼) satisfying functoriality. Type substitution is 𝐴[𝛾] 𝐼 𝛿𝐼 := 𝐴 𝐼 (𝛾 𝛿𝐼).427

A term 𝑎 : Tm Γ 𝐴 is a function 𝑎 : (𝛾𝐼 : Γ 𝐼) → 𝐴 𝐼 𝛾𝐼 such that (𝑎 𝛾𝐼) [𝑓]𝐴 = 𝑎 (𝛾𝐼 [𝑓]Γ).428

Term substitution is 𝑎[𝛾] 𝛿𝐼 := 𝑎 (𝛾 𝛿𝐼). The empty context is constant unit: ⋄ 𝐼 := 𝟙.429

Context extension is pointwise: (Γ ⊲ 𝐴) 𝐼 := (𝛾𝐼 : Γ 𝐼) × 𝐴 𝐼 𝛾𝐼 , its universal property is given430

by projections and pairing for metatheoretic Σ types. ⊤, Σ and Eq are pointwise. We have431

the functor Yoneda y : C → PSh(C) defined by y 𝐼 𝐽 := C(𝐽, 𝐼), and we use this to define the432

universe by U 𝐼 𝛾𝐼 := Ty (y 𝐼). We observe that 𝛾𝐼 [–]Γ : Sub (y 𝐼) Γ (forward part of Yoneda433

lemma), and define Π 𝐴 𝐵 𝐼 𝛾𝐼 := Tm (y 𝐼 ⊲ 𝐴[𝛾𝐼 [–]Γ]) (𝐵[𝛾𝐼 [–]Γ ◦ p, q]). ◀434

▶ Problem 14 (Locally representable types). The CwF of presheaves can be extended to a435

CwF+, which means a CwF with a subsort of Ty called Ty+ and a Π+ type with domain in Ty+,436

i.e. Π+ : (𝐴 : Ty+ Γ) → Ty (Γ ⊲ 𝐴) → Ty Γ with lam+ : Tm (Γ ⊲ 𝐴) 𝐵 � Tm Γ (Π+ 𝐴 𝐵) : app+,437

natural in Γ. Ty+ is classified by the Coquand universe U+.438

Construction. An element 𝐴 : Ty+ Γ is an 𝐴 : Ty Γ together with – ⊲𝐴 – : (𝐼 : C) → Γ 𝐼 → C439

and an isomorphism p𝐴◦– , q𝐴[–]𝐴 : C(𝐽, 𝐼 ⊲𝐴 𝛾𝐼) � (𝑓 : C(𝐽, 𝐼))×𝐴 𝐽 (𝛾𝐼 [𝑓]Γ) : – ,𝐴 – natural440

in 𝐽. So p𝐴 : C(𝐼 ⊲𝐴 𝛾𝐼 , 𝐼) and q𝐴 : 𝐴 (𝐼 ⊲𝐴 𝛾𝐼) (𝛾𝐼 [p𝐴]Γ). Substitution is given by 𝐼 ⊲𝐴[𝛾] 𝛿𝐼 :=441

𝐼 ⊲𝐴 𝛾 𝛿𝐼 and we have C(𝐽, 𝐼 ⊲𝐴[𝛾] 𝛿𝐼) = C(𝐽, 𝐼 ⊲𝐴 𝛾 𝛿𝐼) � (𝑓 : C(𝐽, 𝐼)) × 𝐴 𝐽 (𝛾 𝛿𝐼 [𝑓]Γ) =442

(𝑓 : C(𝐽, 𝐼)) × 𝐴[𝛾] 𝐽 (𝛿𝐼 [𝑓]∆). We define Π+ using the ⊲𝐴 operator which comes with443

𝐴, i.e. Π+ 𝐴 𝐵 𝐼 𝛾𝐼 := 𝐵 (𝐼 ⊲𝐴 𝛾𝐼) (𝛾𝐼 [p𝐴]Γ , q𝐴), 𝑏𝐼 ′ [𝑓]Π+ 𝐴𝐵 := 𝑏𝐼 ′ [𝑓 ◦ p𝐴 ,𝐴 q𝐴], lam+ 𝑏 𝛾𝐼 :=444

𝑏 (𝛾𝐼 [p𝐴]Γ , q𝐴) and app+ 𝑡 (𝛾𝐼 , 𝑎𝐼) := (𝑡 𝛾𝐼) [id𝐼 ,𝐴 𝑎𝐼]𝐵. Like U, U+ 𝐼 𝛾𝐼 := Ty+ (y 𝐼). ◀445

▶ Definition 15 (Naive semantics). Given a category C, PSh(C) is a model of ToS+ choos-446

ing U := U, El 𝑎 := El 𝑎, Π 𝑎 𝐵 := Π (El 𝑎) 𝐵, U+ := U+, el+ 𝑎+ := c (El+ 𝑎+), 𝜋+ 𝑎+ 𝑏 :=447

c
(
Π+ (El+ 𝑎+) (El 𝑏)

)
. Recall that a SOGAT signature Ω is an element of Ty⋄ in the syntax of448

ToS+. A naive model of Ω is a category with a terminal object together with the interpetation449

of Ω in presheaves over this category, i.e. (C : Cat⋄) × TmPSh(C) ⋄ ⟦Ω⟧PSh(C) .450

This definition immediately implies that internally to presheaves over a naive first-order451

model, we have a second order model.452

For illustration, we compute the naive semantics for the signature of untyped lambda453

calculus without the equations. The informal signature is Tm : U, lam : (Tm → Tm) →454

Tm, – ·– : Tm → Tm → Tm, the second-order formal version is ΣU+ 𝜆𝑇𝑚.
(
(𝑇𝑚 ⇒+ el+ 𝑇𝑚) ⇒455

El (el+ 𝑇𝑚)
)
× (el+ 𝑇𝑚 ⇒ el+ 𝑇𝑚 ⇒ El (el+ 𝑇𝑚)), and we interpret the first-order version of this.456

We assume a C : Cat⋄, write D := PSh(C), and use TmD ⋄ ⟦Ω⟧D � ⟦Ω⟧D ⋄C ∗.457 �
ΣU+

((
(q ⇒+ el+ q) ⇒ El (el+ q)

)
×
(
el+ q ⇒ el+ q ⇒ El (el+ q)

))�
D

⋄C ∗ =458

(𝑇𝑚 : Ty+D (y⋄)) × TmD
(
y ⋄ ⊲(𝑇𝑚 ⇒+

D 𝑇𝑚)
)
(𝑇𝑚 [p]) × TmD (y ⋄ ⊲𝑇𝑚) (𝑇𝑚 ⇒ 𝑇𝑚 [p]) =459

(𝑇𝑚 : (𝐼 : C) → C(𝐼,⋄) → Set) × (– [–]𝑇𝑚 : 𝑇𝑚 𝐼 𝜖 → C(𝐽, 𝐼) → 𝑇𝑚 𝐽 𝜖) × . . . ×460

(– ⊲𝑇𝑚 – : (𝐼 : C) → C(𝐼,⋄) → C) × · · · ×
(
𝑙𝑎𝑚 : C(𝐼,⋄) × 𝑇𝑚 (𝐼 ⊲𝑇𝑚 𝜖) → 𝑇𝑚 𝐼 𝜖

)
× · · · ×461

(𝑎𝑝𝑝 : C(𝐼,⋄) × 𝑇𝑚 𝐼 𝜖 → ({𝐽 : C} → C(𝐽, 𝐼) × 𝑇𝑚 𝐽 𝜖 → 𝑇𝑚 𝐽 𝜖) × . . .) × . . .462

CVIT 2016

23:12 Second-order generalised algebraic theories: signatures and first-order semantics

As we can see, the naive semantics produces some encoding overhead: the above definition463

differs from Definition 4 in the following ways: the operations are uncurried, have several464

extra C(𝐼,⋄) arguments (which can be all filled by 𝜖), and the type of 𝑎𝑝𝑝 quantifies over465

another object of C for each argument. This is the result of using the usual presheaf universe466

and function space for interpreting U and Π. We will rectify this in the next section.467

5 Direct semantics of SOGAT signatures468

In this section, we define first-order models of SOGATs using a more careful version of the469

presheaf model. We make sure that no Yoneda-encodings are present in the semantics using470

the idea of two-level type theory [4, 10] where preheaves over a CwF include a universe471

of “inner types” coming from the CwF. We extend two-level type theory with a separate472

function space where the domain is an inner type. This function space is isomorphic to the473

usual presheaf function space, but has a simpler semantics.474

▶ Problem 16 (Presheaves over a CwF). If C is a CwF, then PSh(C) models ToS without475

using the usual presheaf U and Π.476

Construction. We interpet ⊤, Σ, Eq as in Problem 13, but define U, El and Π by TyC , TmC and477

▷C , respectively: U 𝐼 𝛾𝐼 := TyC 𝐼, El 𝑎 𝐼 𝛾𝐼 := TmC 𝐼 (𝑎 𝛾𝐼), Π 𝑎 𝐵 𝐼 𝛾𝐼 := 𝐵 (𝐼 ⊲C 𝑎 𝛾𝐼) (𝛾𝐼 [pC]Γ , qC)478

with lam 𝑏 𝛾𝐼 := 𝑏 (𝛾𝐼 [pC]Γ , q𝐶) and app 𝑡 (𝛾𝐼 , 𝑎𝐼) := 𝑡 𝛾𝐼 [id𝐼 ,C 𝑎𝐼]𝐵. ◀479

▶ Problem 17 (Presheaves over a CwF+). If the category C is a CwF+, then the previous480

model extends to a model of ToS+ (Definition 12).481

Construction. We interpret U+, el+ and 𝜋+ by Ty+C , identity and Π+
C , respectively: U+ 𝐼 𝛾𝐼 :=482

Ty+C 𝐼, el+ 𝑎 𝛾𝐼 := 𝑎 𝛾𝐼 , 𝜋+ 𝑎 𝑏 𝛾𝐼 := Π+ (𝑎 𝛾𝐼)
(
𝑏 (𝛾𝐼 [pC]Γ , qC)

)
, lam+ 𝑡 𝛾𝐼 := lam+

C
(
𝑡 (𝛾𝐼 [pC]Γ , qC)

)
,483

app+ 𝑡 (𝛾𝐼 , 𝑎𝐼) := app+C (𝑡 𝛾𝐼) [id𝐼 ,C 𝑎𝐼]TmC . ◀484

▶ Definition 18 (Direct semantics). A direct model of a SOGAT signature Ω is a category485

with a terminal object C together with the interpretation of Ω in presheaves over presheaves486

over C, evaluated at the terminal presheaf: (C : Cat⋄) × ⟦Ω⟧PSh(PSh(C)) ⋄PSh(C) ∗. Note that487

this makes sense because PSh(C) : CwF+, hence PSh
(
PSh(C)

)
is a model of ToS+.488

We revisit the example from the end of the previous section. We again assume a C : Cat⋄489

and write D := PSh(C) and E := PSh(D).490 �
ΣU+

((
(q ⇒+ el+ q) ⇒ El (el+ q)

)
×
(
el+ q ⇒ el+ q ⇒ El (el+ q)

))�
E
⋄D ∗ =491

(𝑇𝑚 : Ty+D ⋄D) × TmD
(
⋄ ⊲(𝑇𝑚 ⇒+

D 𝑇𝑚)
)
(𝑇𝑚 [p]) × TmD (⋄ ⊲𝑇𝑚 ⊲𝑇𝑚 [p]) (𝑇𝑚 [p] [p]) =492

(𝑇𝑚 : C → 𝟙 → Set) × (– [–]𝑇𝑚 : 𝑇𝑚 𝐼 ∗ → C(𝐽, 𝐼) → 𝑇𝑚 𝐽 ∗) × . . . ×493

(– ⊲𝑇𝑚 – : C → 𝟙 → C) × · · · ×
(
𝑙𝑎𝑚 : 𝟙 × 𝑇𝑚 (𝐼 ⊲𝑇𝑚 ∗) → 𝑇𝑚 𝐼 ∗

)
× · · · ×494

(𝑎𝑝𝑝 : 𝟙 × 𝑇𝑚 𝐼 ∗ × 𝑇𝑚 𝐼 ∗ → 𝑇𝑚 𝐼 ∗) × . . .495

This translation is closer to computing Definition 4 from Definition 3: the only remaining496

noise is that the types of 𝑇𝑚, 𝑙𝑎𝑚 and 𝑎𝑝𝑝 include extra 𝟙 components and 𝑎𝑝𝑝 is uncurried.497

In the next section, we will remove the extra 𝟙s and make the type of application curried.498

▶ Theorem 19. For any signature, the naive and direct semantics result in isomorphic499

notions of models.500

A. Kaposi and Sz. Xie 23:13

Proof. We fix a C : Cat⋄, and denote D := PSh(C) and E := PSh(D). D is a model of ToS+
501

via Definition 15 and E is a model via Definition 18, and Yoneda navigates between them502

(it is not only a functor, but a CwF pseudomorphism [36]). By induction on the syntax of503

ToS+, we define 𝛼 for contexts, substitutions, types and terms: 𝛼Γ : SubE ⟦Γ⟧E (y ⟦Γ⟧D),504

𝛼𝛾 : 𝛼Γ ◦ ⟦𝛾⟧E = y ⟦𝛾⟧D ◦ 𝛼∆, 𝛼𝐴 : ⟦𝐴⟧E � y ⟦𝐴⟧D [𝛼Γ], 𝛼𝑎 : 𝛼𝐴[id, ⟦𝑎⟧E] = y ⟦𝑎⟧D [𝛼Γ].505

For a signature Ω : Ty⋄, we thus obtain ⟦Ω⟧E ⋄D ∗ � y ⟦Ω⟧D [𝛼Γ] ⋄D ∗ = TmD ⋄D ⟦Ω⟧D . ◀506

6 GAT signature semantics of SOGAT signatures507

In this section we translate SOGAT signatures into GAT signatures. The idea is the same as508

in the previous two sections: the GAT signature will start with a category with terminal509

object and then contain the presheaf interpretation of the SOGAT signature over that510

category. However now the presheaf model is not expressed in the metatheory, but internally511

to the theory of GAT signatures. This is challenging because this language is quite limited:512

there are no higher-order functions, no real universe, and so on.513

In this section we work internally to presheaves over the syntax of ToS. Another way to say514

this is that we work in two-level type theory where the inner model is the syntax of ToS. Hence,515

we have the components Ty : Set, Tm : Ty → Set, . . . , refl : (𝑢 = 𝑣) � Tm (Eq 𝐴 𝑢 𝑣) : reflect of516

Definition 9 available (these are the inner types and type formers). We will build a first-order517

model of ToS+, and the final result of the translation will be an element of Ty.518

▶ Construction 20 (Curreid Π). By induction-recursion, we define the Σ-closure of U.519

U∗ : Set El∗ : U∗ → Ty520

⊤∗ : U∗ El∗ ⊤∗ := ⊤521

Σ∗ : (𝑎𝑠 : U∗) →
(
Tm (El∗ 𝑎𝑠) → Tm U

)
→ U∗ El∗ (Σ∗ 𝑎𝑠 𝑏) := Σ (El∗ 𝑎𝑠) 𝜆𝑥.El (𝑏 𝑥)522

By induction on U∗, we define the curried function space with U∗ domain. We call it Π∗ :523

(𝑎𝑠 : U∗) → (Tm (El∗ 𝑎𝑠) → Ty) → Ty and is defined by Π∗ ⊤∗ 𝐵 := 𝐵 tt and Π∗ (Σ∗ 𝑎𝑠 𝑐) 𝐵 :=524

Π∗ 𝑎𝑠
(
𝜆𝑥𝑠.Π (𝑐 𝑥𝑠) 𝜆𝑦.𝐵 (𝑥𝑠, 𝑦)

)
. It comes with lam∗, ·∗, and 𝛽, 𝜂 laws all defined by induction525

on U∗ resulting in lam∗ :
(
(𝑥𝑠 : Tm (El∗ 𝑎𝑠)) → Tm (𝐵 𝑥𝑠)

)
� Tm (Π∗ 𝑎𝑠 𝐵) : – ·∗ –.526

We define the signature for category with a terminal object by Cat⋄ : Ty := ΣU𝜆𝑂𝑏.Σ (𝑂𝑏 ⇒527

𝑂𝑏 ⇒ U) 𝜆𝐻𝑜𝑚 . . . We assume a C : Tm Cat⋄, we refer to its components by 𝑂𝑏, 𝐻𝑜𝑚, . . .528

▶ Problem 21 (A CwF+ D of presheaves over C). There is a notion of CwF+ where the sorts529

of types and terms are Ty-valued. We construct such a CwF+ D of presheaves over C.530

Construction. The category part is given by U∗-valued presheaves and natural transforma-531

tions where ConD :=
(
Γ : Tm (El𝑂𝑏) → U∗) × (

– [–]Γ : Tm
(
El∗ (Γ 𝐼)

)
→ Tm

(
El (𝐻𝑜𝑚 · 𝐽 ·532

𝐼)
)
→ Tm

(
El∗ (Γ 𝐽)

))
×(functoriality) and SubD ∆ Γ :=

(
𝛾 : Tm

(
El∗ (∆ 𝐼)

)
→ Tm

(
El∗ (Γ 𝐼)

))
×533

(naturality). We make sure that Ty, Tm have enough structure to define U-valued presheaves.534

For example, we define TyD : ConD → Ty by535

TyD Γ := Σ (Π𝑂𝑏 𝜆𝐼.Γ 𝐼 ⇒∗ U) 𝜆𝐴.Σ536 (
Π𝑂𝑏 𝜆𝐼.Π∗ (Γ 𝐼) 𝜆𝛾𝐼 .𝐴 · 𝐼 ·∗ 𝛾𝐼 ⇒ Π𝑂𝑏 𝜆𝐽.Π (𝐻𝑜𝑚 · 𝐽 · 𝐼) 𝜆 𝑓 .El

(
𝐴 · 𝐽 ·∗ (𝛾𝐼 [𝑓]Γ)

))
. . .537

TmD is defined using Π∗-functions, context extension ⊲D is Σ∗, Ty+D is the same as TyD538

extended with an ⊲𝐴 operator in Π𝑂𝑏 𝜆𝐼.Γ 𝐼 ⇒∗ El𝑂𝑏, and its universal property. We define539

the first component of Π+
D :

(
𝐴 : Tm (Ty+D Γ)

)
→ Tm

(
TyD (Γ ⊲D 𝐴)

)
→ Tm (TyD Γ) by540

Π+
D 𝐴 𝐵 · 𝐼 ·∗ 𝛾𝐼 := 𝐵 · (⊲𝐴 ·𝐼 ·∗ 𝛾𝐼) ·∗ (𝛾𝐼 [p𝐴]Γ , q𝐴) where ⊲𝐴, p𝐴 and q𝐴 are components in the541

input 𝐴. Note the careful distinguishing of metatheoretic function application, ·s and ·∗s. ◀542

CVIT 2016

23:14 Second-order generalised algebraic theories: signatures and first-order semantics

▶ Problem 22 (E := PSh(D)). The Ty-valued presheaves over D are a first-order model of543

ToS+. We name this model E.544

Proof. ConE is defined as (Ψ : ConD → Ty) × (– [–]Ψ : Tm (ΨΓ) → SubD ∆ Γ →545

Tm (Ψ∆)) × (functoriality). Types are Ty-valued dependent presheaves, terms are sec-546

tions, context extension ⊲E and ΣE are given by Σ. UE , ElE , ΠE are given by TyD , TmD , ⊲D ,547

respectively. EqE is pointwise Eq, its restriction operation and reflectE use reflect. U+
E , el+E ,548

𝜋+E are defined by Ty+D , identity and Π+
D , respectively. ◀549

▶ Construction 23 (SOGAT → GAT translation). Given an Ω : Ty⋄ in the first-order syntax550

of ToS+, its GAT translation is ΣCat⋄ 𝜆C.⟦Ω⟧E(C) ⋄D(C) tt where we explicitly marked that551

D and E depend on C.552

Now we can reuse the semantics of GATs [41, Chapter 4] for any SOGAT, e.g. there is a553

category of models with an initial object, notions of dependent/displayed models, sections,554

induction is equivalent to initiality, free models, cofree models [43].555

Our running example assuming C : Tm Cat⋄ (its first two components named 𝑂𝑏, 𝐻𝑜𝑚):556 �
ΣU+

((
(q ⇒+ el+ q) ⇒ El (el+ q)

)
×
(
el+ q ⇒ el+ q ⇒ El (el+ q)

))�
E
⋄D tt =557

Σ (Ty+D ⋄D) 𝜆𝑇𝑚.TmD
(
⋄ ⊲(𝑇𝑚 ⇒+

D 𝑇𝑚)
)
(𝑇𝑚 [p]) × TmD (⋄ ⊲𝑇𝑚 ⊲𝑇𝑚 [p]) (𝑇𝑚 [p] [p]) =558

Σ

(
Σ (𝑂𝑏 ⇒ U) 𝜆𝑇𝑚.Σ

(
Π𝑂𝑏 𝜆𝐼.𝑇𝑚 · 𝐼 ⇒ Π𝑂𝑏 𝜆𝐽.𝐻𝑜𝑚 · 𝐽 · 𝐼 ⇒ El (𝑇𝑚 · 𝐽)

)
. . .559

Σ (𝑂𝑏 ⇒ El𝑂𝑏) . . .
)
𝜆(𝑇𝑚, . . . , ⊲𝑇𝑚, . . .).Σ

(
Σ (Π𝑂𝑏 𝜆𝐼.𝑇𝑚 · (⊲ ·𝐼) ⇒ El (𝑇𝑚 · 𝐼)

)
. . .)560

𝜆𝑙𝑎𝑚.Σ
(
Π𝑂𝑏 𝜆𝐼.𝑇𝑚 · 𝐼 ⇒ 𝑇𝑚 · 𝐼 ⇒ El (𝑇𝑚 · 𝐼)

)
. . .561

The second line is the same as for the direct semantics, but now D is defined using the curried562

function space, which removes the extra 𝟙s and makes application curried when we unfold563

even more. As we now compute a formal signature in Ty, we do not use implicit arguments,564

and use 𝜆 for binders. The only difference from Definition 4 is that the components for Cat⋄,565

𝑇𝑚 and 𝑙𝑎𝑚 are separate (flat) Σ types, rather than one flat iterated Σ.566

We implemented the SOGAT → GAT translation in Agda using partial deep embeddings567

of ToS and ToS+. It computes the expected GAT signatures for a number of SOGAT examples.568

It is available on the first author’s website with readable versions of the examples.569

The GAT semantics was defined relative to the syntax of ToS. However, it works for any570

model of ToS: if we use the standard model of ToS (set model, metacircular interpretation571

where Con = Set, Ty Γ = Γ → Set, Tm Γ 𝐴 = (𝛾 : Γ) → 𝐴 𝛾) instead of the syntax, we obtain572

another notion of model for each SOGAT signature. We show that this notion of model is573

isomorphic to the direct semantics from the previous section.574

▶ Theorem 24. For any SOGAT signature, the direct semantics and the GAT semantics575

over the standard model yield isomorphic notions of models.576

Proof. We work in presheaves over the standard model of ToS. We observe that in this577

model U and Ty are Russell-universes and are closed under type formers Σ, Π, Eq without578

the restrictions we have in the syntax of ToS. We reformulate Definition 18 in this internal579

language: the category C becomes an element of Tm Cat⋄, the D′ := PSh(C) is a CwF+
580

with Ty-valued types and terms. We compare this D′ and the D given by Problem 21:581

we define 𝛼 : D → D′ as a strict CwF+-morphism which is bijective on Ty, Ty+ and Tm.582

The content of 𝛼 is mapping in and out of the inductive-recursive universe U∗. We denote583

E := PSh(D) and E′ := PSh(D′). Precomposition with 𝛼 is 𝛼∗ : PSh(D′) → PSh(D) which584

A. Kaposi and Sz. Xie 23:15

is a strict CwF-morphism. Now, by induction on the syntax of ToS+, we define 𝛽 for contexts,585

substitutions, types and terms: 𝛽Γ : SubE ⟦Γ⟧E (𝛼∗ ⟦Γ⟧E′), 𝛽𝛾 : 𝛽Γ ◦ ⟦𝛾⟧E = 𝛼∗ ⟦𝛾⟧E′ ◦ 𝛽∆,586

𝛽𝐴 : ⟦𝐴⟧E � 𝛼∗ ⟦𝐴⟧E′ [𝛽Γ], 𝛽𝑎 : 𝛽𝐴[id, ⟦𝑎⟧E] = 𝛼∗ ⟦𝑎⟧E′ [𝛽Γ]. Now for a signature Ω : Ty⋄,587

from 𝛽Ω we have ⟦Ω⟧E ⋄D ∗ � 𝛼∗ ⟦Ω⟧E′ [𝛽⋄] ⋄D ∗ = ⟦Ω⟧E′ ⋄D′ ∗. ◀588

▶ Corollary 25. By combining the isomorphisms of Theorems 19 and 24: for any SOGAT589

signature, in presheaves over any of its first-order models, a second-order model is available.590

7 Extensions and variants591

The translation also works in the case when signatures are open (can refer to external types592

like N in Definition 7). In this case the theory of signatures is defined in the outer layer of a593

two-level type theory where the inner layer is any chosen CwF, and signatures can refer to the594

universe Set◦ of inner types [41, Chapter 3]. The theory of possibly open signatures includes595

a type former Π̂ : (𝐴 : Set◦) → (𝐴→ Ty) → Ty. Similarly, for infinitary signatures, we have596

a type former 𝜋 : (𝐴 : Set◦) → (𝐴→ Tm U) → Tm U. When supporting infinitary operations,597

we have to replace the general Eq type by an equality of types in U. This is because the598

semantics of infinitary GATs is not compatible with sort equations [41, Chapter 5].599

Our translation from SOGAT to GAT is not canonical: for example, we could have used600

semicategories instead of categories. There is also a minimalistic version of the translation601

which results in a single substitution calculus (SSC), which does not involve a category (single602

substitutions are not composable). For the SOGAT ΣU𝜆𝑇𝑦.𝑇𝑦 ⇒ U+, the parallel translation603

results in the GAT known as CwF. The SSC translation for the same SOGAT gives a smaller604

theory: there is no composition or identity substitution, no empty substitution 𝜖 and no605

– , – operator for building substitutions into extended contexts. We have p : Sub (Γ ⊲ 𝐴) Γ ,606

⟨–⟩ : Tm Γ 𝐴 → Sub Γ (Γ ⊲ 𝐴) and –+ : (𝛾 : Sub ∆ Γ) → Sub (∆ ⊲ 𝐴[𝛾]) (Γ ⊲ 𝐴). There are607

four equations for types: 𝐴[p] [𝛾+] = 𝐴[𝛾] [p], 𝐴[p] [⟨𝑏⟩] = 𝐴, 𝐴[⟨𝑏⟩] [𝛾] = 𝐴[𝛾+] [⟨𝑏[𝛾]⟩],608

𝐴[p+] [⟨q⟩] = 𝐴 and four equations for terms: q[⟨𝑏⟩] = 𝑏, q[𝛾+] = q, 𝑏[p] [𝛾+] = 𝑏[𝛾] [p],609

𝑏[p] [⟨𝑎⟩] = 𝑏. The resulting theory is a minimalistic variant of B systems [1]. CwFs are610

models of the resulting theory, but not the other way. The syntaxes are however equivalent611

(the situation is analogous to the relationship of lambda calculus and combinatory logic [8]).612

With small modifications, the translation described in Section 6 can be used to obtain613

the SSC translation of a GAT. We only change the construction for Problem 21: C is not a614

category, just a graph with a vertex ⋄; ConD and TyD do not include functoriality equations;615

𝐴 : Ty+D Γ includes ⊲𝐴, but not the usual universal property; instead we have p𝐴, q𝐴, ⟨–⟩𝐴,616

–+𝐴 operations and the above described 8 equations.617

8 Conclusions and further work618

In this paper we described SOGAT signatures and translations from SOGAT signatures to619

GAT signatures. Correctness of our parallel substitution-based translation was shown by620

constructing an isomorphism with the naive semantics, and was validated by several examples.621

In the future we would like to show equivalence with Uemura’s semantic definition of SOGATs.622

We would like to computer check our constructions possibly using strict presheaves [44]. It623

would be interesting to understand the exact relationship between our parallel and single624

substitution calculi: we conjecture that for any SOGAT, they yield equivalent syntaxes.625

We hope that our paper makes a step towards proof assistants with SOGAT support.626

In such a system, the user could specify the signature for a SOGAT using a built-in ToS+,627

and would automatically obtain notions of first-order and second-order models, morphisms,628

iterators, induction principles (also for second-order displayed models [15]), and so on.629

CVIT 2016

23:16 Second-order generalised algebraic theories: signatures and first-order semantics

References630

1 Benedikt Ahrens, Jacopo Emmenegger, Paige Randall North, and Egbert Rijke. B-systems631

and C-systems are equivalent. The Journal of Symbolic Logic, page 1–9, 2023. doi:10.1017/632

jsl.2023.41.633

2 Benedikt Ahrens, André Hirschowitz, Ambroise Lafont, and Marco Maggesi. Modular spe-634

cification of monads through higher-order presentations. In Herman Geuvers, editor, 4th635

International Conference on Formal Structures for Computation and Deduction, FSCD 2019,636

June 24-30, 2019, Dortmund, Germany, volume 131 of LIPIcs, pages 6:1–6:19. Schloss Dag-637

stuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPIcs.FSCD.638

2019.6, doi:10.4230/LIPICS.FSCD.2019.6.639

3 Guillaume Allais, Robert Atkey, James Chapman, Conor McBride, and James McKinna. A640

type- and scope-safe universe of syntaxes with binding: their semantics and proofs. J. Funct.641

Program., 31:e22, 2021. doi:10.1017/S0956796820000076.642

4 Thorsten Altenkirch, Paolo Capriotti, and Nicolai Kraus. Extending homotopy type theory with643

strict equality. In Jean-Marc Talbot and Laurent Regnier, editors, 25th EACSL Annual Confer-644

ence on Computer Science Logic, CSL 2016, August 29 - September 1, 2016, Marseille, France,645

volume 62 of LIPIcs, pages 21:1–21:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.646

URL: https://doi.org/10.4230/LIPIcs.CSL.2016.21, doi:10.4230/LIPICS.CSL.2016.21.647

5 Thorsten Altenkirch, Yorgo Chamoun, Ambrus Kaposi, and Michael Shulman. Internal648

parametricity, without an interval. Proc. ACM Program. Lang., 8(POPL):2340–2369, 2024.649

doi:10.1145/3632920.650

6 Thorsten Altenkirch and Ambrus Kaposi. Normalisation by evaluation for dependent types. In651

Delia Kesner and Brigitte Pientka, editors, 1st International Conference on Formal Structures652

for Computation and Deduction, FSCD 2016, June 22-26, 2016, Porto, Portugal, volume 52653

of LIPIcs, pages 6:1–6:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. URL:654

https://doi.org/10.4230/LIPIcs.FSCD.2016.6, doi:10.4230/LIPICS.FSCD.2016.6.655

7 Thorsten Altenkirch and Ambrus Kaposi. Type theory in type theory using quotient inductive656

types. In Rastislav Bodík and Rupak Majumdar, editors, Proceedings of the 43rd Annual657

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016,658

St. Petersburg, FL, USA, January 20 - 22, 2016, pages 18–29. ACM, 2016. doi:10.1145/659

2837614.2837638.660

8 Thorsten Altenkirch, Ambrus Kaposi, Artjoms Sinkarovs, and Tamás Végh. Combinatory logic661

and lambda calculus are equal, algebraically. In Marco Gaboardi and Femke van Raamsdonk,662

editors, 8th International Conference on Formal Structures for Computation and Deduction,663

FSCD 2023, July 3-6, 2023, Rome, Italy, volume 260 of LIPIcs, pages 24:1–24:19. Schloss664

Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPIcs.665

FSCD.2023.24, doi:10.4230/LIPICS.FSCD.2023.24.666

9 Thorsten Altenkirch and Bernhard Reus. Monadic presentations of lambda terms using667

generalized inductive types. In Jörg Flum and Mario Rodríguez-Artalejo, editors, Computer668

Science Logic, 13th International Workshop, CSL ’99, 8th Annual Conference of the EACSL,669

Madrid, Spain, September 20-25, 1999, Proceedings, volume 1683 of Lecture Notes in Computer670

Science, pages 453–468. Springer, 1999. doi:10.1007/3-540-48168-0_32.671

10 Danil Annenkov, Paolo Capriotti, Nicolai Kraus, and Christian Sattler. Two-level type672

theory and applications. Mathematical Structures in Computer Science, 33(8):688–743, 2023.673

doi:10.1017/S0960129523000130.674

11 Samy Avrillon. Logic as a second-order generalized algebraic theory, 2023. Report on the675

3-month research internship at the Faculty of Informatics of ELTE. URL: https://github.676

com/MysaaJava/m1-internship/releases/download/project-report/Avrillon-02.pdf.677

12 Andrej Bauer, Philipp G. Haselwarter, and Peter LeFanu Lumsdaine. A general definition of678

dependent type theories. CoRR, abs/2009.05539, 2020. URL: https://arxiv.org/abs/2009.679

05539, arXiv:2009.05539.680

https://doi.org/10.1017/jsl.2023.41
https://doi.org/10.1017/jsl.2023.41
https://doi.org/10.1017/jsl.2023.41
https://doi.org/10.4230/LIPIcs.FSCD.2019.6
https://doi.org/10.4230/LIPIcs.FSCD.2019.6
https://doi.org/10.4230/LIPIcs.FSCD.2019.6
https://doi.org/10.4230/LIPICS.FSCD.2019.6
https://doi.org/10.1017/S0956796820000076
https://doi.org/10.4230/LIPIcs.CSL.2016.21
https://doi.org/10.4230/LIPICS.CSL.2016.21
https://doi.org/10.1145/3632920
https://doi.org/10.4230/LIPIcs.FSCD.2016.6
https://doi.org/10.4230/LIPICS.FSCD.2016.6
https://doi.org/10.1145/2837614.2837638
https://doi.org/10.1145/2837614.2837638
https://doi.org/10.1145/2837614.2837638
https://doi.org/10.4230/LIPIcs.FSCD.2023.24
https://doi.org/10.4230/LIPIcs.FSCD.2023.24
https://doi.org/10.4230/LIPIcs.FSCD.2023.24
https://doi.org/10.4230/LIPICS.FSCD.2023.24
https://doi.org/10.1007/3-540-48168-0_32
https://doi.org/10.1017/S0960129523000130
https://github.com/MysaaJava/m1-internship/releases/download/project-report/Avrillon-02.pdf
https://github.com/MysaaJava/m1-internship/releases/download/project-report/Avrillon-02.pdf
https://github.com/MysaaJava/m1-internship/releases/download/project-report/Avrillon-02.pdf
https://arxiv.org/abs/2009.05539
https://arxiv.org/abs/2009.05539
https://arxiv.org/abs/2009.05539
https://arxiv.org/abs/2009.05539

A. Kaposi and Sz. Xie 23:17

13 Rafaël Bocquet. External univalence for second-order generalized algebraic theories. CoRR,681

abs/2211.07487, 2022. URL: https://doi.org/10.48550/arXiv.2211.07487, arXiv:2211.682

07487, doi:10.48550/ARXIV.2211.07487.683

14 Rafaël Bocquet. Towards coherence theorems for equational extensions of type theories.684

CoRR, abs/2304.10343, 2023. URL: https://doi.org/10.48550/arXiv.2304.10343, arXiv:685

2304.10343, doi:10.48550/ARXIV.2304.10343.686

15 Rafaël Bocquet, Ambrus Kaposi, and Christian Sattler. For the metatheory of type theory,687

internal sconing is enough. In Marco Gaboardi and Femke van Raamsdonk, editors, 8th688

International Conference on Formal Structures for Computation and Deduction, FSCD 2023,689

July 3-6, 2023, Rome, Italy, volume 260 of LIPIcs, pages 18:1–18:23. Schloss Dagstuhl - Leibniz-690

Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPIcs.FSCD.2023.18, doi:691

10.4230/LIPICS.FSCD.2023.18.692

16 Paolo Capriotti. Notions of type formers. In Ambrus Kaposi, editor, 23rd International693

Conference on Types for Proofs and Programs, TYPES 2017. Eötvös Loránd University, 2017.694

URL: http://types2017.elte.hu/proc.pdf#page=77.695

17 John Cartmell. Generalised algebraic theories and contextual categories. Ann. Pure Appl.696

Log., 32:209–243, 1986. doi:10.1016/0168-0072(86)90053-9.697

18 Simon Castellan, Pierre Clairambault, and Peter Dybjer. Categories with families: Unityped,698

simply typed, and dependently typed. CoRR, abs/1904.00827, 2019. URL: http://arxiv.699

org/abs/1904.00827, arXiv:1904.00827.700

19 Thierry Coquand. Canonicity and normalization for dependent type theory. Theor. Comput.701

Sci., 777:184–191, 2019. URL: https://doi.org/10.1016/j.tcs.2019.01.015, doi:10.1016/702

J.TCS.2019.01.015.703

20 Marcelo P. Fiore and Chung-Kil Hur. Second-order equational logic (extended abstract). In704

Anuj Dawar and Helmut Veith, editors, Computer Science Logic, 24th International Workshop,705

CSL 2010, 19th Annual Conference of the EACSL, Brno, Czech Republic, August 23-27, 2010.706

Proceedings, volume 6247 of Lecture Notes in Computer Science, pages 320–335. Springer,707

2010. doi:10.1007/978-3-642-15205-4_26.708

21 Marcelo P. Fiore, Andrew M. Pitts, and S. C. Steenkamp. Quotients, inductive types, and709

quotient inductive types. Log. Methods Comput. Sci., 18(2), 2022. URL: https://doi.org/710

10.46298/lmcs-18(2:15)2022, doi:10.46298/LMCS-18(2:15)2022.711

22 Marcelo P. Fiore, Gordon D. Plotkin, and Daniele Turi. Abstract syntax and variable binding.712

In 14th Annual IEEE Symposium on Logic in Computer Science, Trento, Italy, July 2-5, 1999,713

pages 193–202. IEEE Computer Society, 1999. doi:10.1109/LICS.1999.782615.714

23 Jonas Frey. Duality for clans: a refinement of gabriel-ulmer duality. CoRR, abs/2308.11967,715

2023. URL: https://doi.org/10.48550/arXiv.2308.11967, arXiv:2308.11967, doi:10.716

48550/ARXIV.2308.11967.717

24 Gaëtan Gilbert, Jesper Cockx, Matthieu Sozeau, and Nicolas Tabareau. Definitional proof-718

irrelevance without K. Proc. ACM Program. Lang., 3(POPL):3:1–3:28, 2019. doi:10.1145/719

3290316.720

25 Daniel Gratzer. Normalization for multimodal type theory. In Christel Baier and Dana Fisman,721

editors, LICS ’22: 37th Annual ACM/IEEE Symposium on Logic in Computer Science, Haifa,722

Israel, August 2 - 5, 2022, pages 2:1–2:13. ACM, 2022. doi:10.1145/3531130.3532398.723

26 Robert Harper. Practical Foundations for Programming Languages (2nd. Ed.). Cambridge724

University Press, 2016. URL: https://www.cs.cmu.edu/%7Erwh/pfpl/index.html.725

27 Robert Harper. An equational logical framework for type theories. CoRR, abs/2106.01484,726

2021. URL: https://arxiv.org/abs/2106.01484, arXiv:2106.01484.727

28 Robert Harper, Furio Honsell, and Gordon D. Plotkin. A framework for defining logics. J.728

ACM, 40(1):143–184, 1993. doi:10.1145/138027.138060.729

29 Philipp G. Haselwarter and Andrej Bauer. Finitary type theories with and without contexts.730

J. Autom. Reason., 67(4):36, 2023. URL: https://doi.org/10.1007/s10817-023-09678-y,731

doi:10.1007/S10817-023-09678-Y.732

CVIT 2016

https://doi.org/10.48550/arXiv.2211.07487
https://arxiv.org/abs/2211.07487
https://arxiv.org/abs/2211.07487
https://arxiv.org/abs/2211.07487
https://doi.org/10.48550/ARXIV.2211.07487
https://doi.org/10.48550/arXiv.2304.10343
https://arxiv.org/abs/2304.10343
https://arxiv.org/abs/2304.10343
https://arxiv.org/abs/2304.10343
https://doi.org/10.48550/ARXIV.2304.10343
https://doi.org/10.4230/LIPIcs.FSCD.2023.18
https://doi.org/10.4230/LIPICS.FSCD.2023.18
https://doi.org/10.4230/LIPICS.FSCD.2023.18
https://doi.org/10.4230/LIPICS.FSCD.2023.18
http://types2017.elte.hu/proc.pdf#page=77
https://doi.org/10.1016/0168-0072(86)90053-9
http://arxiv.org/abs/1904.00827
http://arxiv.org/abs/1904.00827
http://arxiv.org/abs/1904.00827
https://arxiv.org/abs/1904.00827
https://doi.org/10.1016/j.tcs.2019.01.015
https://doi.org/10.1016/J.TCS.2019.01.015
https://doi.org/10.1016/J.TCS.2019.01.015
https://doi.org/10.1016/J.TCS.2019.01.015
https://doi.org/10.1007/978-3-642-15205-4_26
https://doi.org/10.46298/lmcs-18(2:15)2022
https://doi.org/10.46298/lmcs-18(2:15)2022
https://doi.org/10.46298/lmcs-18(2:15)2022
https://doi.org/10.46298/LMCS-18(2:15)2022
https://doi.org/10.1109/LICS.1999.782615
https://doi.org/10.48550/arXiv.2308.11967
https://arxiv.org/abs/2308.11967
https://doi.org/10.48550/ARXIV.2308.11967
https://doi.org/10.48550/ARXIV.2308.11967
https://doi.org/10.48550/ARXIV.2308.11967
https://doi.org/10.1145/3290316
https://doi.org/10.1145/3290316
https://doi.org/10.1145/3290316
https://doi.org/10.1145/3531130.3532398
https://www.cs.cmu.edu/%7Erwh/pfpl/index.html
https://arxiv.org/abs/2106.01484
https://arxiv.org/abs/2106.01484
https://doi.org/10.1145/138027.138060
https://doi.org/10.1007/s10817-023-09678-y
https://doi.org/10.1007/S10817-023-09678-Y

23:18 Second-order generalised algebraic theories: signatures and first-order semantics

30 Martin Hofmann. Syntax and semantics of dependent types. In Semantics and Logics of733

Computation, pages 79–130. Cambridge University Press, 1997.734

31 Martin Hofmann. Semantical analysis of higher-order abstract syntax. In 14th Annual IEEE735

Symposium on Logic in Computer Science, Trento, Italy, July 2-5, 1999, pages 204–213. IEEE736

Computer Society, 1999. doi:10.1109/LICS.1999.782616.737

32 Jasper Hugunin. Why not W? In Ugo de’Liguoro, Stefano Berardi, and Thorsten Altenkirch,738

editors, 26th International Conference on Types for Proofs and Programs, TYPES 2020, March739

2-5, 2020, University of Turin, Italy, volume 188 of LIPIcs, pages 8:1–8:9. Schloss Dagstuhl -740

Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.TYPES.2020.741

8, doi:10.4230/LIPICS.TYPES.2020.8.742

33 Jonas Kaiser, Steven Schäfer, and Kathrin Stark. Binder aware recursion over well-scoped743

de Bruijn syntax. In June Andronick and Amy P. Felty, editors, Proceedings of the 7th ACM744

SIGPLAN International Conference on Certified Programs and Proofs, CPP 2018, Los Angeles,745

CA, USA, January 8-9, 2018, pages 293–306. ACM, 2018. doi:10.1145/3167098.746

34 Ambrus Kaposi. Formalisation of type checking into algebraic syntax. https://bitbucket.747

org/akaposi/tt-in-tt/src/master/Typecheck.agda, 2018.748

35 Ambrus Kaposi. Quotient inductive-inductive types and higher friends. Talk given at749

the Homotopy Type Theory Electronic Seminar Talks (HoTTEST), October 2020. URL:750

https://akaposi.github.io/pres_hottest.pdf.751

36 Ambrus Kaposi, Simon Huber, and Christian Sattler. Gluing for type theory. In Herman752

Geuvers, editor, 4th International Conference on Formal Structures for Computation and753

Deduction, FSCD 2019, June 24-30, 2019, Dortmund, Germany, volume 131 of LIPIcs,754

pages 25:1–25:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https:755

//doi.org/10.4230/LIPIcs.FSCD.2019.25, doi:10.4230/LIPICS.FSCD.2019.25.756

37 Ambrus Kaposi and András Kovács. A syntax for higher inductive-inductive types. In Hélène757

Kirchner, editor, 3rd International Conference on Formal Structures for Computation and758

Deduction, FSCD 2018, July 9-12, 2018, Oxford, UK, volume 108 of LIPIcs, pages 20:1–20:18.759

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL: https://doi.org/10.4230/760

LIPIcs.FSCD.2018.20, doi:10.4230/LIPICS.FSCD.2018.20.761

38 Ambrus Kaposi, András Kovács, and Thorsten Altenkirch. Constructing quotient inductive-762

inductive types. Proc. ACM Program. Lang., 3(POPL):2:1–2:24, 2019. doi:10.1145/3290315.763

39 Ambrus Kaposi, András Kovács, and Ambroise Lafont. For finitary induction-induction, induc-764

tion is enough. In Marc Bezem and Assia Mahboubi, editors, 25th International Conference765

on Types for Proofs and Programs, TYPES 2019, June 11-14, 2019, Oslo, Norway, volume766

175 of LIPIcs, pages 6:1–6:30. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL:767

https://doi.org/10.4230/LIPIcs.TYPES.2019.6, doi:10.4230/LIPICS.TYPES.2019.6.768

40 András Kovács and Ambrus Kaposi. Large and infinitary quotient inductive-inductive types.769

In Holger Hermanns, Lijun Zhang, Naoki Kobayashi, and Dale Miller, editors, LICS ’20: 35th770

Annual ACM/IEEE Symposium on Logic in Computer Science, Saarbrücken, Germany, July771

8-11, 2020, pages 648–661. ACM, 2020. doi:10.1145/3373718.3394770.772

41 András Kovács. Type-Theoretic Signatures for Algebraic Theories and Inductive Types. PhD773

thesis, Eötvös Loránd University, Hungary, 2022. URL: https://arxiv.org/pdf/2302.08837.774

pdf.775

42 Paul Blain Levy, John Power, and Hayo Thielecke. Modelling environments in call-by-value776

programming languages. Inf. Comput., 185(2):182–210, 2003. doi:10.1016/S0890-5401(03)777

00088-9.778

43 Hugo Moeneclaey. Parametricity and semi-cubical types. In 36th Annual ACM/IEEE Sym-779

posium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages780

1–11. IEEE, 2021. doi:10.1109/LICS52264.2021.9470728.781

44 Pierre-Marie Pédrot. Russian constructivism in a prefascist theory. In Holger Hermanns,782

Lijun Zhang, Naoki Kobayashi, and Dale Miller, editors, LICS ’20: 35th Annual ACM/IEEE783

https://doi.org/10.1109/LICS.1999.782616
https://doi.org/10.4230/LIPIcs.TYPES.2020.8
https://doi.org/10.4230/LIPIcs.TYPES.2020.8
https://doi.org/10.4230/LIPIcs.TYPES.2020.8
https://doi.org/10.4230/LIPICS.TYPES.2020.8
https://doi.org/10.1145/3167098
https://bitbucket.org/akaposi/tt-in-tt/src/master/Typecheck.agda
https://bitbucket.org/akaposi/tt-in-tt/src/master/Typecheck.agda
https://bitbucket.org/akaposi/tt-in-tt/src/master/Typecheck.agda
https://akaposi.github.io/pres_hottest.pdf
https://doi.org/10.4230/LIPIcs.FSCD.2019.25
https://doi.org/10.4230/LIPIcs.FSCD.2019.25
https://doi.org/10.4230/LIPIcs.FSCD.2019.25
https://doi.org/10.4230/LIPICS.FSCD.2019.25
https://doi.org/10.4230/LIPIcs.FSCD.2018.20
https://doi.org/10.4230/LIPIcs.FSCD.2018.20
https://doi.org/10.4230/LIPIcs.FSCD.2018.20
https://doi.org/10.4230/LIPICS.FSCD.2018.20
https://doi.org/10.1145/3290315
https://doi.org/10.4230/LIPIcs.TYPES.2019.6
https://doi.org/10.4230/LIPICS.TYPES.2019.6
https://doi.org/10.1145/3373718.3394770
https://arxiv.org/pdf/2302.08837.pdf
https://arxiv.org/pdf/2302.08837.pdf
https://arxiv.org/pdf/2302.08837.pdf
https://doi.org/10.1016/S0890-5401(03)00088-9
https://doi.org/10.1016/S0890-5401(03)00088-9
https://doi.org/10.1016/S0890-5401(03)00088-9
https://doi.org/10.1109/LICS52264.2021.9470728

A. Kaposi and Sz. Xie 23:19

Symposium on Logic in Computer Science, Saarbrücken, Germany, July 8-11, 2020, pages784

782–794. ACM, 2020. doi:10.1145/3373718.3394740.785

45 Brigitte Pientka and Jana Dunfield. Beluga: A framework for programming and reasoning786

with deductive systems (system description). In Jürgen Giesl and Reiner Hähnle, editors,787

Automated Reasoning, pages 15–21, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.788

46 Benjamin C. Pierce. Types and programming languages. MIT Press, 2002.789

47 Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino, Marco Gaboardi, Michael790

Greenberg, Cătălin Hriţcu, Vilhelm Sjöberg, Andrew Tolmach, and Brent Yorgey. Programming791

Language Foundations, volume 2 of Software Foundations. Electronic textbook, 2024. Version792

6.5, http://softwarefoundations.cis.upenn.edu.793

48 Jonathan Sterling. First Steps in Synthetic Tait Computability: The Objective Metatheory794

of Cubical Type Theory. PhD thesis, Carnegie Mellon University, USA, 2022. URL: https:795

//doi.org/10.1184/r1/19632681.v1, doi:10.1184/R1/19632681.V1.796

49 Jonathan Sterling and Carlo Angiuli. Normalization for cubical type theory. In 36th Annual797

ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 -798

July 2, 2021, pages 1–15. IEEE, 2021. doi:10.1109/LICS52264.2021.9470719.799

50 Taichi Uemura. Abstract and Concrete Type Theories. PhD thesis, University of Amsterdam,800

2021.801

51 Philip Wadler, Wen Kokke, and Jeremy G. Siek. Programming Language Foundations in Agda.802

August 2022. URL: https://plfa.inf.ed.ac.uk/22.08/.803

A More examples of languages as SOGATs804

▶ Definition 26 (Hindley–Milner type system).

MTy : Set805

Ty : Set806

i : MTy → Ty807

Tm : Ty → Set808

– ⇒ – : MTy → MTy → MTy809

lam :
(
Tm (i 𝐴) → Tm (i 𝐵)

)
� Tm (i (𝐴⇒ 𝐵)) : – · –810

∀ : (MTy → Ty) → Ty811

Lam :
(
(𝐴 : MTy) → Tm (𝐵 𝐴)

)
� Tm (∀ 𝐵) : – • –812

▶ Definition 27 (System F).

Ty : Set813

Tm : Ty → Set814

– ⇒ – : Ty → Ty → Ty815

lam : (Tm 𝐴→ Tm 𝐵) � Tm (𝐴⇒ 𝐵) : – · –816

∀ : (Ty → Ty) → Ty817

Lam : (𝑋 : Ty → Tm (𝐴 𝑋)) � Tm (∀ 𝐴) : – • –818

The following language is interesting because its sorts and operations are interleaved: the819

typing of the sort Tm depends on the operation ∗.820

▶ Definition 28 (System F𝜔).

Kind : Set Tm : Ty ∗ → Set821

CVIT 2016

https://doi.org/10.1145/3373718.3394740
http://softwarefoundations.cis.upenn.edu
https://doi.org/10.1184/r1/19632681.v1
https://doi.org/10.1184/r1/19632681.v1
https://doi.org/10.1184/r1/19632681.v1
https://doi.org/10.1184/R1/19632681.V1
https://doi.org/10.1109/LICS52264.2021.9470719
https://plfa.inf.ed.ac.uk/22.08/

23:20 Second-order generalised algebraic theories: signatures and first-order semantics

Ty : Kind → Set ∀ : (Ty𝐾 → Ty ∗) → Ty ∗822

– ⇛ – : Kind → Kind → Kind Lam : ((𝑋 : Ty𝐾) → Tm (𝐴 𝑋)) �823

LAM : (Ty𝐾 → Ty 𝐿) � Tm (∀ 𝐴) : – • –824

Ty (𝐾 ⇛ 𝐿) : – – – ⇒ – : Ty ∗ → Ty ∗ → Ty ∗825

∗ : Kind lam : (Tm 𝐴→ Tm 𝐵) � Tm (𝐴⇒ 𝐵) : – · –826

In the first-order version (minimised by removing Kind variables), we have sorts Kind : Set,827

Ty : Con → Kind → Set, an operation ∗ : Kind, and a sort Tm : (Γ : Con) → Ty Γ ∗ → Set.828

We have three operations binding Ty-variables and one operation binding a term-variable:829

LAM : Ty (Γ ⊲Ty 𝐾) 𝐿 → Ty Γ (𝐾 ⇛ 𝐿) Lam : Tm (Γ ⊲Ty 𝐾) 𝐴→ Tm Γ (∀𝐴)830

∀ : Ty (Γ ⊲Ty 𝐾) ∗ → Ty Γ ∗ lam : Tm (Γ ⊲Tm 𝐴) (𝐵[pTm]Ty) → Tm Γ (𝐴⇒ 𝐵)831

The language of fine-grain call by value is to Freyd categories [42] as simply typed lambda832

calculus is to cartesian closed categories. Here we add some type formers and a fixpoint833

operator for illustration. All variables are values (in Val).834

▶ Definition 29 (Fine-grain call by value).

Ty : Set – ⇒ – : Ty → Ty → Ty835

Val : Ty → Set lam : (Val 𝐴→ Tm 𝐵) → Val (𝐴⇒ 𝐵)836

Tm : Ty → Set – · – : Val (𝐴⇒ 𝐵) → Val 𝐴→ Tm 𝐵837

return : Val 𝐴→ Tm 𝐴 ⇒𝛽 : lam 𝑓 · 𝑎 = 𝑓 𝑎838

– ≫= – : Tm 𝐴→ (Val 𝐴→ Tm 𝐵) → Tm 𝐵 – × – : Ty → Ty → Ty839

idl : return 𝑎≫= 𝑓 = 𝑓 𝑎 – , – : Val 𝐴→ Val 𝐵 → Val (𝐴 × 𝐵)840

idr : 𝑚 ≫= return = 𝑚 case× : Val (𝐴 × 𝐵) →841

ass : (𝑚 ≫= 𝑓) ≫= 𝑔 = (Val 𝐴→ Val 𝐵 → Tm𝐶) → Tm𝐶842

𝑚 ≫= (𝜆𝑎. 𝑓 𝑎≫= 𝑔) ×𝛽 : case× (𝑎, 𝑏) 𝑓 = 𝑓 𝑎 𝑏843

T : Ty → Ty fix : (Val (T 𝐴) → Tm 𝐴) → Tm 𝐴844

thunk : Tm 𝐴 � Val (T 𝐴) : force fix𝛽 : fix 𝑓 = 𝑓
(
thunk (fix 𝑓)

)
845

The next definition adds Σ, 0, 1, 2 and W-types to minimal Martin-Löf type theory, which is846

enough to encode all inductive types [32].847

▶ Definition 30 (Martin-Löf type theory with inductive types). We extend Definition 7 with848

the following.849

Σ : (𝐴 : Ty 𝑖) → (Tm 𝐴→ Ty 𝑖) → Ty 𝑖850

(– , –) : (𝑎 : Tm 𝐴) × Tm (𝐵 𝑎) � Tm (Σ 𝐴 𝐵) : fst, snd851

⊥ : Ty 0852

exfalso : Tm⊥ → Tm 𝐴853

⊤ : Ty 0854

tt : ⊤ � Tm⊤855

Bool : Ty 0856

true : Tm Bool857

false : Tm Bool858

A. Kaposi and Sz. Xie 23:21

indBool : (𝐶 : Tm Bool → Ty 𝑖) → Tm (𝐶 true) → Tm (𝐶 false) →859

(𝑏 : Tm Bool) → Tm (𝐶 𝑏)860

Bool𝛽1 : indBool 𝑡 𝑓 true = 𝑡861

Bool𝛽2 : indBool 𝑡 𝑓 false = 𝑓862

Id : (𝐴 : Ty 𝑖) → Tm 𝐴→ Tm 𝐴→ Ty 𝑖863

refl : (𝑎 : Tm 𝐴) → Tm (Id 𝑎 𝑎)864

J :
(
𝐶 : (𝑥 : Tm 𝐴) → Tm (Id 𝐴 𝑎 𝑥) → Ty 𝑖

)
→865

Tm
(
𝐶 𝑎 (refl 𝑎)

)
→ (𝑥 : Tm 𝐴) (𝑒 : Tm (Id 𝐴 𝑎 𝑥)) → Tm (𝐶 𝑥 𝑒)866

Id𝛽 : J𝐶 𝑤 𝑎 (refl 𝑎) = 𝑤867

W : (𝑆 : Ty 𝑖) → (Tm 𝑆 → Ty 𝑖) → Ty 𝑖868

sup : (𝑠 : Tm 𝑆) → (Tm (𝑃 𝑠) → W 𝑆 𝑃) → W 𝑆 𝑃869

indW : (𝐶 : Tm (W 𝑆 𝑃) → Ty 𝑖) →870 ((
(𝑝 : Tm (𝑃 𝑠)) → Tm (𝐶 (𝑓 𝑝))

)
→ Tm

(
𝐶 (sup 𝑠 𝑓)

))
→871

(𝑤 : Tm (W S P)) → Tm
(
𝐶 𝑤

)
872

W𝛽 : indW𝐶 ℎ (sup 𝑠 𝑓) = ℎ (𝜆𝑝.indW𝐶 ℎ (𝑓 𝑝))873

CVIT 2016

	1 Introduction
	2 Classes of algebraic theories through examples
	3 Theories of signatures as SOGATs
	4 Naive semantics of SOGAT signatures
	5 Direct semantics of SOGAT signatures
	6 GAT signature semantics of SOGAT signatures
	7 Extensions and variants
	8 Conclusions and further work
	A More examples of languages as SOGATs

