
Formalising the Completeness Theorem of
Classical Propositional Logic in Agda (Proof

Pearl)

Leran Cai, Ambrus Kaposi, and Thorsten Altenkirch

University of Nottingham
{psylc5, psxak8, psztxa}@nottingham.ac.uk

Abstract. A computer formalisation of the completeness of the boolean
model of classical propositional logic is presented. The work follows Huth
and Ryan’s proof [9]. The proof is constructed for a classical logic system
in natural deduction style with all logical connectives. The formalisation
is constructive and uses the interactive theorem prover Agda which is
an implementation of intensional Martin-Löf type theory [11]. Functions
have to be defined in a structurally recursive way to pass the termination
checker of Agda. The basic definitions of the formal system must be
carefully chosen in order to provide a convenient environment to build
correct proofs and meanwhile prevent from getting warnings from the
type checker. The formalisation is written in an accessible way so that
it can be used for educational purposes. The full source code is available
online1.

Keywords: Agda, Completeness Theorem, Classical Propositional Logic

1 Introduction

1.1 Outline

This paper describes the implementation of the completeness theorem for clas-
sical propositional logic in Agda. By interactively implementing the proof in
Agda, we can attain deeper understanding of how to construct formal proofs for
arbitrary propositions from their propositional atoms and how the law of the
excluded middle (LEM) is used. Informally, the completeness theorem can be
stated as follows:

(Soundness) If a propositional formula has a proof deduced from the given
premises, then all assignments of the premises which make them evaluate to
true also make the formula evaluate to true.

1 The formalisation is available at http://bitbucket.org/Leran/
propositional-logic. It has been typechecked with Agda version 2.4.2.2
and standard library 0.9.

2 Leran Cai, Ambrus Kaposi, Thorsten Altenkirch

(Completeness) If for all assignments of the axioms and premises which make
them evaluate to true also make a propositional formula true, then it is
always possible to construct a proof of this formula by applying the deduction
rules on the given premises.

The name of the second theorem alone is completeness theorem which is
confusing because the general completeness theorem usually claims them both
[6] [10]. Thus we call the theorems as the soundness part and completeness part
of the completeness theorem.

1.2 Related Work

The context of this work is formalising completeness theorems of formal logic
systems in Agda. Formalising the completeness of intuitionistic logic with Kripke
model in a proof assistant has been finished by a number of researchers. Herbe-
lin and Lee presented an implementation of the completeness of Kripke model
for intuitionistic logic with implication and universal quantification in Coq [8].
Blanchette et al. construct the completeness theorem of first-order logic by using
Gentzen’s system and codatatypes [4]. Coquand presents a fully formalised proof
of the soundness and completeness of simply-typed λ-calculus with respect to
Kripke models [5].

We focus on classical propositional logic in natural deduction style and prove
its soundness and completeness with regards the boolean model. In the future, we
will attempt to formalise other completeness theorems for nonstandard Kripke
model and Beth model of the intuitionistic full first-order predicate logic ([15],
[13]).

The formalisation takes place in a constructive metalanguage of Agda, which
means that the proof has computational content. The corresondance between
classical logic and computation has been first noticed by Griffin [7]. A good
summary of the developments in this area is Urban’s PhD thesis [14].

2 Background

2.1 Agda

All proofs were conducted in Agda ([11], [1]), an interactive proof assistant which
implements Martin-Löf type theory [12] and can be used as a framework to
formalise formal logic systems. It is also a dependently typed functional pro-
gramming language with inductive families. Π types (dependent functions) are
written by the generalised arrow notation (x:A) → B which can be interpreted
as ∀x ∈ A.B by the Curry-Howard correspondance. Implicit arguments are de-
noted by curly brackets eg. f : {x:A} → B, in this case it is not necessary to
provide these arguments as Agda will try to deduce them. We can still provide
them by the f {x = ...} notation. The notation ∀ {x} abbreviates {x : }
where the type of x is inferred by Agda, the underline character denoted a wild-
card. Agda functions can be defined with infix or mixfix notation, eg. _⇒_ is

Completeness Theorem of Classical Propositional Logic in Agda 3

an infix function, ~_ is a prefix operator. The underlines denote the positions of
the arguments.

Mathematical proofs in Agda are written as structurally recursive functions.
Therefore, constructing a mathematical proof in Agda is equivalent to construct-
ing a well-typed function which can terminate. Induction is performed by pattern
matching on the arguments of the function. Inductive types, and more generally,
inductive families can be defined by using the data keyword.

In addition, Agda supports Unicode characters, which allows us to write
proofs that look like common logic proofs on textbooks.

2.2 Syntax and Semantics

The formalisation of the completeness theorem requires a proper design of the
classical propositional logic system in which the syntax and semantics should be
carefully defined. For the syntax, a crucial question is how to define propositional
formulas. A propositional formula is a string of indivisible propositional atoms
and logical connectives. In Agda, we can define them as inductive types and
thereby finding the main connective and making the tree structure of a formula
explicit is trivial.

As for semantics, every proposition in classical propositional logic can be
assigned with a boolean value. This can be implemented as a function which
takes a propositional formula as its input and its output is the meaning of the
formula.

With appropriate definitions, the soundness proof and completeness proof
can be implemented more easily. The proofs essentially follow Huth and Ryan
[9] but completes the unfinished proofs which they do not explain, especially the
use of the law of the excluded middle.

2.3 Completeness theorem

In this part we summarize what the completeness theorem states and briefly
introduce the ideas of their proofs. Before we formally give the completeness
theorem, we need to specify how to interpret some fundamental concepts of the
completeness theorem.

Definition 1. (Sequent) A sequent is a set of formulas φ1, φ2, ..., φn called premises
and another formula ψ which is called conclusion.

Definition 2. (Proof tree) A proof tree of a sequent φ1, φ2, ..., φn ` ψ is a tree
with root ψ where the nodes are propositional logic deduction rules and φ1, ..., φn
can be leaves.

Definition 3. (Context) A context is a set of all the premises in a sequent. The
sequent φ1, φ2, ..., φn ` ψ can be written as Γ ` ψ where Γ contains φi for all
1 6 i 6 n. When the sequent only contains a theorem as its conclusion, the
context is an empty collection ∅, e.g. ∅ ` ψ.

4 Leran Cai, Ambrus Kaposi, Thorsten Altenkirch

Definition 4. (Semantic entailment) If for all valuations (mappings from the
propositional atoms to booleans) in which the context Γ evaluates to true, ψ also
evaluates to true, we say that Γ semantically entails ψ. It can be written as
Γ � ψ.

With the interpretations above, the we can state soundness and completeness:

Theorem 1. (Soundness) Let φ1, φ2, ..., φn and ψ be propositional logic formu-
las. If φ1, φ2, ..., φn ` ψ is valid, then φ1, φ2, ..., φn � ψ holds.

Theorem 2. (Completeness) Let φ1, φ2, ..., φn and ψ be propositional logic for-
mulas. If φ1, φ2, ..., φn � ψ holds, then φ1, φ2, ..., φn ` ψ is valid.

The completeness theorem consists of both. Therefore, the corollary can be
stated as follows:

Corollary 1. (Completeness Theorem) Let φ1, φ2, ..., φn, ψ be formulas of propo-
sitional logic. φ1, φ2, ..., φn � ψ holds iff the sequent φ1, φ2, ..., φn ` ψ is valid.

2.3.1 Soundness proof The soundness part asserts: Γ ` ψ → Γ � ψ. To
prove it, we do induction on the depth of the proof tree of Γ ` ψ. In essence,
this induction checks the last propositional deduction rule the proof of Γ ` ψ
uses. For example, if the least significant connective in ψ is ∧ which means ψ
has form φ1 ∧ φ2, then we can say that the last rule in the proof of Γ ` ψ is
conjuction (∧) introduction rule which is the only way to construct propositions
which have the form φ1 ∧ φ2. Then we use the induction hypothesis to prove
that Γ � φ1 and Γ � φ2 both hold and use them to prove Γ � φ1 ∧ φ2 (Γ � ψ)
by discussing how logic connectives handle truth values. In Agda, the induction
on the depth of the proof tree becomes structural induction defined by pattern
matching.

2.3.2 Completeness proof The completeness part asserts: Γ � ψ → Γ ` ψ
where Γ consists of φ1, φ2, ..., φn. This theorem should be proved in three steps:

Lemma 1. Our first step is to prove the theorem: φ1, φ2, ..., φn � ψ → ∅ �
φ1 ⇒ φ2 ⇒ ... ⇒ φn ⇒ ψ. This states that if φ1, φ2, ..., φn semantically
entails ψ then φ1 ⇒ φ2 ⇒ ...⇒ φn ⇒ ψ is a tautology.

Lemma 2. In this step, the weak version of completeness which is ∅ � η →
∅ ` η is proved. This asserts that all tautologies have a proof. By proving
this, we can demonstrate that ∅ � φ1 ⇒ φ2 ⇒ ... ⇒ φn ⇒ ψ → ∅ ` φ1 ⇒
φ2 ⇒ ...⇒ φn ⇒ ψ.

Lemma 3. The last step is: ∅ ` φ1 ⇒ φ2 ⇒ ...⇒ φn ⇒ ψ → φ1, φ2, ..., φn ` ψ.
Given ∅ ` φ1 ⇒ φ2 ⇒ ... ⇒ φn ⇒ ψ, we add in φ1, φ2, ..., φn as premises
and we use implication (⇒) elimination rule to reduce the proposition from
φ1 ⇒ φ2 ⇒ ...⇒ φn ⇒ ψ to ψ. In the end we can obtain φ1, φ2, ..., φn ` ψ.

By combining these three proofs together we can prove the completeness.

Completeness Theorem of Classical Propositional Logic in Agda 5

3 Implementation in Agda

In this section, we first follow the definitions in the previous section to implement
the syntax and semantics for our formal system. Then the detailed discussion of
the proof of completeness theorem will be given as well as the code implemen-
tation in Agda.

We use the following notational conventions:

Γ contexts
φi, ψ, χ, η propositions
pi propositional atoms
ρ valuation
σ, σi, δ proof trees

3.1 Syntax

The basic object in classical propositional logic is the well-formed propositional
formula. We define the inductive type Props whose inhabitants are well-formed
propositions. Using the constructors ⊥, >, patom, . . . is the only way to con-
struct an object which has type Props.

data Props : Set where
⊥ > : Props
patom : Fin n → Props
~_ : Props → Props
∨ _∧_ _⇒_ : Props → Props → Props

The number of propositional atoms is denoted n, this is a natural number pa-
rameter of the whole formalisation. Thus, a formula can refer to n different
propositional atoms, this is expressed by the patom constructor which takes a
value of type Fin n. For a natural number n the datatype Fin n is the type of
natural numbers less than n.

For example, the formula p0 ⇒ (p0∨ ∼ p1) which mentions on 2 propositional
atoms is represented by patom zero ⇒ (patom zero ∨ ∼ patom (suc zero)).
patom zero is the first propositional atom.

A context is defined as a list where one can insert new elements at the end.
In Agda, we call it Cxt. It has one natural number index, this carries the length
of the context.

data Cxt : N → Set where
∅ : Cxt zero
• : { l : N} → Cxt l → Props → Cxt (suc l)

Then we can use Cxt and Props to define the type of proof trees. An element
of the data type Γ ` φ will be the a proof tree which has φ at its root and the
assumptions in Γ at its leaves. The constructors represent the deduction rules.

6 Leran Cai, Ambrus Kaposi, Thorsten Altenkirch

In this way, we can guarantee that every proof tree in Agda is valid since they
can only be constructed by using deduction rules.

We write the types of the constructors in a deduction rule style, the horizontal
lines are just comments in Agda.

data _`_ : { l : N} (Γ : Cxt l) (ψ : Props) → Set where
var : ∀ { l} {Γ : Cxt l} {ψ} → Γ • ψ ` ψ
weaken : ∀ { l} {Γ : Cxt l} {φ ψ} → Γ ` ψ

-- ————–
→ Γ • φ ` ψ

>-i : ∀ { l} {Γ : Cxt l} → Γ ` >
⊥-e : ∀ { l} {Γ : Cxt l} {ψ} → Γ ` ⊥

-- ——–
→ Γ ` ψ

~-i : ∀ { l} {Γ : Cxt l} {ψ} → Γ • ψ ` ⊥
-- ————–
→ Γ ` ∼ ψ

~-e : ∀ { l} {Γ : Cxt l} {ψ} → Γ ` ψ → Γ ` ∼ ψ
-- ————————–
→ Γ ` ⊥

⇒-i : ∀ { l} {Γ : Cxt l} {φ ψ} → Γ • φ ` ψ
-- ————–
→ Γ ` φ⇒ ψ

⇒-e : ∀ { l} {Γ : Cxt l} {φ ψ} → Γ ` φ⇒ ψ → Γ ` φ
-- —————————–
→ Γ ` ψ

∧-i : ∀ { l} {Γ : Cxt l} {φ ψ} → Γ ` φ → Γ ` ψ
-- ———————–
→ Γ ` φ ∧ ψ

∧-e1 : ∀ { l} {Γ : Cxt l} {φ ψ} → Γ ` φ ∧ ψ
-- ————–
→ Γ ` φ

∧-e2 : ∀ { l} {Γ : Cxt l} {φ ψ} → Γ ` φ ∧ ψ
-- ————–
→ Γ ` ψ

∨-i1 : ∀ { l} {Γ : Cxt l} {φ ψ} → Γ ` φ
-- ————–
→ Γ ` φ ∨ ψ

∨-i2 : ∀ { l} {Γ : Cxt l} {φ ψ} → Γ ` ψ
-- ————–
→ Γ ` φ ∨ ψ

∨-e : ∀ { l} {Γ : Cxt l} {φ ψ χ} → Γ ` φ ∨ ψ
→ Γ • φ ` χ

Completeness Theorem of Classical Propositional Logic in Agda 7

→ Γ • ψ ` χ
-- ————–
→ Γ ` χ

lem : ∀ { l} {Γ : Cxt l} {ψ} → Γ ` ψ ∨ ∼ ψ

We handle variable binding by De Bruijn indices implemented by the variable
rule var and the weakening rule weaken. The variable rule says that if the context
ends with ψ, then we can prove ψ. The weakening rule asserts that if ψ can be
deduced from the one context, then we can also deduce it from an extended
context.

An example of a derivation tree is

var
∅ · φ ∧ ψ ` φ ∧ ψ ∧-e2∅ · φ ∧ ψ ` ψ

var
∅ · φ ∧ ψ ` φ ∧ ψ ∧-e1∅ · φ ∧ ψ ` φ

∧-i∅ · φ ∧ ψ ` ψ ∧ φ
⇒-i∅ ` φ ∧ ψ ⇒ ψ ∧ φ

it is represented by the Agda term

⇒-i (∧-i (∧-e2 var) (∧-e1 var)) .

3.2 Semantics

In Agda, we use semantic brackets J_K to give propositional formulas meanings.
It is a function which takes a formula as an input and returns a boolean value
as its semantics.

Any proposition either is a propositional atom or consists of a certain number
of propositions and propositional connectives. Thus the semantics for an arbi-
trary proposition should depend on the valuation of each propositional atom
and the behaviours of each propositional connective. Valuations (elements of the
type Val) are functions from the n-element set to booleans.

Val = Fin n → Bool
J_K : Props → Val → Bool
J ⊥ K ρ = false
J > K ρ = true
J patom x K ρ = ρ x
J ∼ φ K ρ = neg (J φ K ρ)
J φ1 ∨ φ2 K ρ = J φ1 K ρ ‘or‘ J φ2 K ρ
J φ1 ∧ φ2 K ρ = J φ1 K ρ ‘and‘ J φ2 K ρ
J φ1 ⇒ φ2 K ρ = neg (J φ1 K ρ) ‘or‘ J φ2 K ρ

In this definition, neg, and, or are the usual boolean operations.
In essence, this way of defining the semantics of propositions is the same as

doing induction on syntax trees of propositions. For example, in φ1 ∨ φ2 we

8 Leran Cai, Ambrus Kaposi, Thorsten Altenkirch

investigate the meaning of left subtree and the meaning of the right subtree.
Then we use the meaning of the ∨ on the node to define the meaning of the
whole tree. On the leaves of proposition syntax trees are all propositional atoms
which are not divisible. Their semantics are determined by the valuation ρ we
give.

The meaning of a context is just the conjuction of the meanings of its for-
mulas.

J_Kc : { l : N} → Cxt l → Val → Bool
J ∅ Kc ρ = true
J Γ • φ Kc ρ = J Γ Kc ρ ‘and‘ J φ K ρ

Now we have defined both Props and Cxt. The semantic entailment is given
as follows:

� : { l : N} → Cxt l → Props → Set
Γ � ψ = ∀ ρ → J Γ Kc ρ ≡ true → J ψ K ρ ≡ true

This _�_ relation states that for all valuations, if all formulas in the context
evaluate to true then the conclusion also evaluates to true. _≡_ denotes the
internal equality of Agda.

3.3 Soundness proof

We implement the soundness theorem Γ ` ψ → Γ � ψ as the following function:

soundness : ∀ { l} {Γ : Cxt l} {ψ : Props} → Γ ` ψ → Γ � ψ

If we expand the definition of �, we get the following type:

soundness : ∀ { l} {Γ : Cxt l} {ψ : Props} → Γ ` ψ
→ (∀ ρ → J Γ Kc ρ ≡ true → J ψ K ρ ≡ true)

As we mentioned before, we prove this by structural induction on the proof
tree. By pattern matching on the proof tree σ which has type Γ ` ψ, we can
check which is the last deduction rule. In Agda’s interactive interface,

soundness σ = {!!}

becomes

soundness var = { !!}
soundness (weaken σ) = {!!}
soundness >-i = { !!}
soundness (⊥-e σ) = { !!}
soundness (~-i σ) = { !!}
soundness (~-e σ σ1) = {!!}
soundness (⇒-i σ) = {!!}

Completeness Theorem of Classical Propositional Logic in Agda 9

soundness (⇒-e σ σ1) = { !!}
soundness (∧-i σ σ1) = {!!}
soundness (∧-e1 σ) = {!!}
soundness (∧-e2 σ) = {!!}
soundness (∨-i1 σ) = { !!}
soundness (∨-i2 σ) = { !!}
soundness (∨-e σ σ1 σ2) = { !!}
soundness lem = { !!}

after pattern matching. The {!!} parts denote holes in the proof which need to
be filled in by the user.

We exemplify filling one of the holes, the one for conjuction introduction
rule. The fundamental idea is to use induction hypothesis to prove the semantic
entailment relation between the context and the component of the original propo-
sition and discuss how the logic connectives handle truth values. One important
idea is that using induction hypothesis means recursively calling the soundness
function. The decuction rule of conjunction introduction is the following:

Γ ` φ1 Γ ` φ2 ∧-i
Γ ` φ1 ∧ φ2

In the implementation, the left subtree (proving Γ ` φ1) is denoted σ1, the right
subtree (proving Γ ` φ2) is denoted σ2.

soundness {ψ = φ1 ∧ φ2} (∧-i σ1 σ2) ρ JΓ K≡true
with J φ1 K ρ | inspect J φ1 K ρ | J φ2 K ρ | inspect J φ2 K ρ

... | true | [] | true | [] = refl

... | true | [] | false | [Jφ2K≡false]

= Jφ2K≡false -1
� (soundness σ2 ρ JΓ K≡true)

... | false | [Jφ1K≡false] | | []

= Jφ1K≡false -1
� (soundness σ1 ρ JΓ K≡true)

Our goal is to prove soundness when the proposition has form ∧-i σ1 σ2 :
Γ ` φ1 ∧ φ2. The result needs to be of type Γ � φ1 ∧ φ2, that is

∀ ρ → J Γ Kc ρ ≡ true → J φ1 ∧ φ2 K ρ ≡ true.

The valuation is denoted by ρ and the witness that the context evaluates to true
is denoted JΓ K=true. We prove soundness by inspecting the meaning of φ1 and
φ2, that is pattern matching on the values of J φ1 K ρ and J φ2 K ρ, respectively,
by using the with construct of Agda. with is like a dependent case analysis.
inspect provides witnesses of patterns matching, eg. inspect J φ2 K ρ proves
J φ2 K ρ ≡ false in the case when J φ2 K ρ was matched by false.

In the case when both of meanings are true, the return type will just reduce
to true ≡ true which can be proven by refl (reflexivity, the Agda constructor
for the _≡_ type).

10 Leran Cai, Ambrus Kaposi, Thorsten Altenkirch

In the cases when one of them is false, we use the induction hypothesis. For
example, if J φ1 K ρ is true and J φ2 K ρ is false, we need to prove false ≡ true.
This can be done by using transitivity (_�_) to compose the equalities

φ2≡false -1 : false ≡ J φ2 K ρ

and

soundness σ2 ρ JΓ K≡true : J φ2 K ρ ≡ true.

The rest of the deduction rules of classical propositional logic can be proved
in a similar way.

3.4 Completeness proof

In this section we present the proof of completeness and its implementation in
Agda. The general theorem is Γ � ψ → Γ ` ψ. As mentioned before, the general
theorem is split into three lemmas.

lemma1 : ∀ { l} {Γ : Cxt l} {ψ : Props} → Γ � ψ → ∅ � Γ V ψ
lemma2 : ∀ {η : Props} → ∅ � η → ∅ ` η
lemma3 : ∀ { l} {Γ : Cxt l} {ψ : Props} → ∅ ` (Γ V ψ) → Γ ` ψ
completeness : ∀ { l} {Γ : Cxt l} {φ : Props} → Γ � φ → Γ ` φ
completeness = lemma3 ◦ lemma2 ◦ lemma1

3.4.1 Proof of Lemma 1. Γ � ψ → ∅ � Γ V ψ

The idea is to move every propositional formula in the context to the right
hand side of the turnstile and combine them with the given proposition ψ to
construct a tautology. For example, if Γ contains n propositions which are
φ1, φ2, ..., φn, the proposition we will construct is φ1 ⇒ φ2 ⇒ ... ⇒ φn ⇒ ψ.
The reason why Γ V ψ is a tautology is simple: the only situation where this
evaluates to false is when each proposition in Γ evaluates to true and ψ evalu-
ates to false. However, this is impossible because we know Γ � ψ which means
ψ must evaluate to true when everything in Γ evaluates to true.

We first implement a function Γ V ψ by induction on Γ :

V : ∀ { l} (Γ : Cxt l) (ψ : Props) → Props
∅V ψ = ψ
(Γ • φ)V ψ = Γ V φ⇒ ψ

Then we prove the proposition Γ V φ we constructed is a tautology:

lemma1 : ∀ { l} {Γ : Cxt l} {ψ : Props} → Γ � ψ → ∅ � Γ V ψ
lemma1 {Γ = ∅} {ψ} ∅�ψ ρ J∅K≡true = ∅�ψ ρ J∅K≡true

Completeness Theorem of Classical Propositional Logic in Agda 11

lemma1 {Γ = Γ • φ} {ψ} ∅�ψ ρ J∅K≡true
= lemma1 {Γ = Γ } (λ ρ’ → oneStep ρ’ (∅�ψ ρ’)) ρ refl

The idea of the proof is that we investigate the form of Γ by pattern matching
in Agda. The case when Γ is ∅ is trivial. If Γ has form (Γ • φ), then we use the
helper function

oneStep : ∀ ρ → (J Γ • φ Kc ρ ≡ true → J ψ K ρ ≡ true)
→ (J Γ Kc ρ ≡ true → J φ⇒ ψ K ρ ≡ true)

to prove that by first pattern matching on the truth value of φ and ψ. This
enables us to move one proposition from the left hand side to the right hand
side of �. By repeating this step, we can move all propositions to the right hand
side. lemma1 is calling oneStep as many times as required. In the end, we will
get a semantical entailment relation: ∅ � φ1 ⇒ φ2 ⇒ ... ⇒ φn ⇒ ψ which is
∅ � Γ V ψ.

3.4.2 Proof of Lemma 2. ∅ � η → ∅ ` η

This lemma (weak completeness) is the most difficult part of the proof be-
cause η can be an arbitrary proposition and we have to present a concrete proof
that we can always construct a proof by using deduction rules regardless of the
inner structure of the tautology η.

Given a tautology η which contains n propositional atoms p0, p1, ...pn−1, there
are 2n different lines of valuations in the truth table of η and η always evaluates to
true no matter what valuation it uses. The key idea of proving weak completeness
is that we encode each line of valuation in the truth table as a specific context.
Then we first give an intermediate proof which says that from any one of these
2n different contexts we can always derive η. Then we embed this proof in the
proof of weak completeness by proving that from an empty context (∅) we can
construct all of these 2n contexts by using the law of excluded middle.

To encode the 2n lines of valuation, we introduce a definition Cxt [ρ] which
explains how to translate a truth assignment into a context.

Definition 5. (Cxt[ρ]): Given a valuation ρ of n propositional atoms named
p0, p1, ..., pn−1, we construct a context based on them. Cxt[ρ] is a context which
contains n propositions: p̂0, p̂1, ..., p̂n−1 where p̂i = pi if pi is assigned true by ρ,
otherwise p̂i =∼ pi.

The two steps in the proof are as follows:

lemma21 : ∀ {η : Props} → ∅ � η → (∀ ρ → Cxt [ρ] 6-refl ` η)
lemma22 : ∀ {η : Props} → (∀ ρ → Cxt [ρ] 6-refl ` η) → ∅ ` η
lemma2 = lemma22 ◦ lemma21

12 Leran Cai, Ambrus Kaposi, Thorsten Altenkirch

3.4.2.1 Formalising Cxt[ρ] in Agda

Before formalising Cxt[ρ], we first define p̂[ρ] to construct p̂i given a valua-
tion ρ and a number x which has type Fin n in Agda in preparation for defining
Cxt[ρ].

p̂i [ρ] : ∀ ρ → Fin n → Props
p̂i [ρ] ρ x with ρ x
p̂i [ρ] ρ x | true = patom x
p̂i [ρ] ρ x | false = ∼ patom x

Cxt[ρ] consists of p̂is, but we cannot define it in Agda by doing pattern
matching on the number of propositional variables n because it is a parameter
of the whole proof. Instead we define cut-off contexts: Cxt [ρ] (α) will be the
first a elements of Cxt[ρ] where α : a 6 n. This way we can define Cxt [ρ] (α)
by induction on a. We also need these cut-off contexts to prove lemmas from
Lemma 2.2.2 on.

Cxt [] : ∀ ρ {a} → a 6 n → Cxt l
Cxt [] {zero} z6n = ∅
Cxt [] ρ {suc a} α = Cxt [ρ] (6⇒pred6 α) • p̂i [ρ] (fromN6 α)

Another way to represent a and a 6 n would be to use an a : Fin (suc n).
However, this would add additional difficulties of converting elements of Fin n
into N and vice versa.

3.4.2.2 Proof of lemma 2.1

Lemma 2.1 says that given ∅ � η, for all valuations ρ, Cxt [ρ] ` η. We prove it
by proving the following two lemmas mutually, and then using lemma 2.1.1.

lemma211 : ∀ {ψ} ρ → (J ψ K ρ ≡ true) → (Cxt [ρ] 6-refl) ` ψ
lemma212 : ∀ {ψ} ρ → (J ψ K ρ ≡ false) → (Cxt [ρ] 6-refl) ` ∼ ψ
lemma21 σ ρ = lemma211 ρ (σ ρ refl)

6-refl is the proof that the relation _6_ is reflexive.
We illustrate the proof of Cxt [ρ] `ψ by the case when ψ has form φ1 ∧ φ2

as an example. The other cases are similar.

lemma211 {ψ = φ1 ∧ φ2} ρ
with J φ1 K ρ | inspect J φ1 K ρ | J φ2 K ρ | inspect J φ2 K ρ

lemma211 {ψ = φ1 ∧ φ2} ρ | true | [φ1≡true] | true | [φ2≡true]
= ∧-i (lemma211 ρ φ1≡true) (lemma211 ρ φ2≡true)

lemma211 {ψ = φ1 ∧ φ2} ρ () | true | [] | false | []
lemma211 {ψ = φ1 ∧ φ2} ρ () | false | [] | | []

We inspect the meaning of φ1 and φ2, and if both are true, we use the
induction hypotheses. If one of them is false, the type of the third argument of

Completeness Theorem of Classical Propositional Logic in Agda 13

the function which was originally J ψ K ρ ≡ true will reduce to false ≡ true
and this can be pattern matched with the absurd pattern () of Agda. If there is
an absurd pattern on the left hand side, we don’t need a right hand side.

3.4.2.3 Proof of lemma 2.2

Lemma 2.2 says that if for all valuations ρ, Cxt[ρ] ` η is valid, then we can
deduce η from only the basic deduction rules without the help of any other
premises. In other words, η is a theorem.

lemma22 : ∀ {η : Props} → (∀ ρ → Cxt [ρ] 6-refl ` η) → ∅ ` η

The idea of the proof is straightforward. We start with a context containing
n propositions if η has at most n propositional atoms. In the end, the context
contains zero propositions. It is natural to think of reducing the number of
propositions in the context one at a time, by using the law of excluded middle.

To prove Lemma 2.2, we first prove a more general lemma. As we cannot do
induction on n, we need to introduce introduce a new parameter a on which we
do induction, and b will remain unchanged during computation.

lemma221 : ∀ {η} {a b} {an : a 6 n} {bn : b 6 n} (ba : b 6 a)
→ (∀ ρ → Cxt [ρ] an ` η) → (∀ ρ → Cxt [ρ] bn ` η)

One special case of Lemma 2.2.1 is Lemma 2.2 where a = n and b = 0
and we add a dummy valuation:

lemma22 σ = lemma221 {bn = z6n} z6n σ (λ → true) .

Lemma 2.2.2 will reduce the length of the context by one:

lemma222 : ∀ {a} {α : a < n} {η : Props}
→ (∀ ρ → Cxt [ρ] {suc a} α ` η)
→ (∀ ρ → Cxt [ρ] {a} (6⇒pred6 α) ` η) .

This is the step that is repeated by lemma 2.2.1 until we reach b:

lemma221 {a = a} {b} ba σ ρ with a ?
= b

lemma221 ba σ ρ | yes refl
= subst (λ z → Cxt [ρ] z `) (6-unique) (σ ρ)

lemma221 {a = zero} z6n σ ρ | no ¬p
= subst (λ x → Cxt [ρ] x `) (6-unique) (σ ρ)

lemma221 {a = suc a} ba σ ρ | no ¬p

= lemma221 (lemma-62 ba (¬p ◦ _-1)) (lemma222 σ) ρ

subst replaces equal elements in a type (subst : (P : A → Set) → a ≡ b →
P a → P b), 6-unique says that proofs of the ordering relation are unique,
lemma-62 is a helper lemma regarding orderings.

14 Leran Cai, Ambrus Kaposi, Thorsten Altenkirch

The proof of lemma 2.2.2 is using the excluded middle:

lemma222 {a = a} {α} {η} σ ρ
= ∨-e (lem {ψ = patom (fromN6 α)})
(subst (λ z → z ` η) (lemma-Cxt ρ α) (σ (ρ [α 7→ true])))
(subst (λ z → z ` η) (lemma-Cxt ρ α) (σ (ρ [α 7→ false])))

The proof tree is the following:

lem
p̂0,p̂1,...,p̂a−1`pa∨∼pa p̂0,p̂1,...,p̂a−1,pa`η p̂0,p̂1,...,p̂a−1,∼pa`η ∨-e

p̂0,p̂1,...,p̂a−1`η

Obviously the first premise can be deduced by using LEM. The key is to
get the second and the third premises by induction. First we have a powerful
condition in our hands (look at the type of lemma222): ∀ ρ,Cxt [ρ] (suc a) ` η.
For a fixed ρ, we know that Cxt [ρ] (a) is p̂0, p̂1, ..., p̂a−1. We then construct
two specific valuations ρ [a 7→ true] and ρ [a 7→ false]. In the former, the first a
assignments are equal to the first a assignments in \rho, and the (1 + a)th element
is true. Now we can see that Cxt [ρ [a 7→ true]] (suc a) is p̂0, p̂1, ..., p̂a−1, pa.
As we mentioned above, we have a powerful premise in our hands: ∀ ρ →
Cxt [ρ] (suc a) ` η. We replace the general ρ by our ρ [a 7→ true]. From this
we get p̂0, p̂1, ..., p̂a−1, pa ` η which is the second premise in the proof tree.
Similarly, we construct another valuation ρ [a 7→ false] and get a proof for the
third premise in the proof tree above.

lemma-Cxt is a helper lemma stating that Cxt [ρ [a 7→ true]] (1 + a) is
the same as the composition of the contexts Cxt [ρ] a and patom a (with some
additional noise given by proofs that a is less than n).

3.4.3 Lemma 3 ∅ ` (Γ V ψ) → Γ ` ψ

This is the last thing we need to prove. The expanded view of Γ V ψ is
φ1 ⇒ φ2 ⇒ ... ⇒ φn ⇒ ψ. We present the proof for how to move one φi from
the right hand side to the left hand side. This can be used recursively to move
all φs to the left.

φ1, φ2, ..., φn ` φ1 ⇒ φ2 ⇒ ...⇒ φn ⇒ ψ

φ1 ∈ φ1, φ2, ..., φn var, weaken
φ1, φ2, ..., φn ` φ1 ⇒-e

φ1, φ2, ...φn ` φ2 ⇒ φ3 ⇒ ...⇒ φn ⇒ ψ

In Agda, its formalisation is given as follows:

lemma3 : ∀ { l} {Γ : Cxt l} {ψ : Props} → ∅ ` (Γ V ψ) → Γ ` ψ
lemma3 {Γ = ∅} {ψ} σ = σ
lemma3 {Γ = Γ • φ} {ψ} σ

= ⇒-e (weaken (lemma3 {Γ = Γ } σ)) var

Completeness Theorem of Classical Propositional Logic in Agda 15

4 Conclusion

This paper implements in Agda a formalisation of the proof for soundness and
completeness of classical propositional logic. In order to construct the proof with
Agda recognisable functions, we have to find some more general propositions to
prove so that the functions we need to construct in Agda are structurally recur-
sive and can pass the termination checker. The original proof then will become
a special case of the more general propositions that we give. This intention in
return provides us with a higher level view of what the proof actually says. In the
end, we achieve a rigorous and clear proof of completeness theorem in classical
propositional logic.

An interesting further step would be to investigate the computational content
of this proof in the style of normalisation by completeness ([3], [2]). The com-
pleteness and the soundness proofs can be composed which gives a normalisation
procedure on proof trees (which can be thought about as computer programs).

nbc : ∀ { l} {Γ : Cxt l} {φ : Props} → Γ ` φ → Γ ` φ
nbc = completeness ◦ soundness

References

1. The Agda Wiki. (2015), http://wiki.portal.chalmers.se/agda
2. Altenkirch, T., Hofmann, M., Streicher, T.: Categorical reconstruction of a reduc-

tion free normalization proof. In: Pitt, D., Rydeheard, D.E., Johnstone, P. (eds.)
Category Theory and Computer Science. pp. 182–199. LNCS 953 (1995)

3. Berger, U., Schwichtenberg, H.: An inverse of the evaluation functional for typed
λ–calculus. In: Vemuri, R. (ed.) Proceedings of the Sixth Annual IEEE Symposium
on Logic in Computer Science. pp. 203–211. IEEE Computer Society Press, Los
Alamitos (1991)

4. Blanchette, J.C., Popescu, A., Traytel, D.: Unified classical logic completeness - a
coinductive pearl. In: IJCAR’14. pp. 46–60 (2014)

5. Coquand, C.: A formalised proof of the soundness and completeness of a sim-
ply typed lambda-calculus with explicit substitutions. Higher-Order and Sym-
bolic Computation 15(1), 57–90 (2002), http://dx.doi.org/10.1023/A%
3A1019964114625

6. van Dalen, D.: Logic and structure (3. ed.). Universitext, Springer (1994)
7. Griffin, T.G.: A formulae-as-types notion of control. In: In Conference Record of the

Seventeenth Annual ACM Symposium on Principles of Programming Languages.
pp. 47–58. ACM Press (1990)

8. Herbelin, H., Lee, G.: Forcing-based cut-elimination for gentzen-style intuitionistic
sequent calculus. In: Logic, Language, Information and Computation, 16th Interna-
tional Workshop, WoLLIC 2009, Tokyo, Japan, June 21-24, 2009. Proceedings. pp.
209–217 (2009), http://dx.doi.org/10.1007/978-3-642-02261-6_17

9. Huth, M., Ryan, M.: Logic in Computer Science: modelling and reasoning about
systems (Chinese edition). Cambridge University Press (2005)

10. Johnstone, P.T.: Notes on logic and set theory. Cambridge University Press (1987)

16 Leran Cai, Ambrus Kaposi, Thorsten Altenkirch

11. Norell, U.: Towards a practical programming language based on dependent type
theory. Ph.D. thesis, Chalmers University of Technology (2007)

12. Program, T.U.F.: Homotopy type theory: Univalent foundations of mathematics.
Tech. rep., Institute for Advanced Study (2013)

13. Troelstra, A., van Dalen, D.: Constructivism in Mathematics. Studies in Logic
and the Foundations of Mathematics, Elsevier Science (1988), http://books.
google.co.uk/books?id=-tc2qp0-2bsC

14. Urban, C.: Classical logic and computation. Ph.D. thesis, University of Cambridge
(2000)

15. Veldman, W.: An intuitiomstic completeness theorem for intuitionistic predi-
cate logic. Journal of Symbolic Logic 41, 159–166 (3 1976), http://journals.
cambridge.org/article_S0022481200051859

