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Structuralist language for mathematics

▶ Paul Benacerraf. What numbers could not be (1965)

▶ Zermelo: {∅, {∅}, {{∅}}, . . . }
▶ von Neumann: {∅, {∅}, {∅, {∅}}, . . . }

▶ Different names for the same idea:

▶ structuralism

▶ abstraction

▶ representation independence

▶ information hiding

▶ uniformity

▶ naturality

▶ parametricity
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John C. Reynolds (1935-2013)

Some contributions:

▶ polymorphic lambda calculus
(System F by Girard)

▶ definitional interpreters

▶ defunctionalisation

▶ separation logic

▶ parametricity

▶ Types, abstraction and
parametric polymorphism
(1983)
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Reynolds’ fable 1/3
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Reynolds’ fable 2/3
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Reynolds’ fable 3/3
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Reynolds’ parametricity

▶ Everything preserves relations

▶ In the context of the polymorphic lambda calculus
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Example of parametricity 1

f : (A : Type) → A → A

R : A → B → Type

r : R a b

f P R r : R (f A a) (f B b)
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Example of parametricity 1

f : (A : Type) → A → A

g : A → B

a : A

f P R r : g (f A a) = f B (g a)
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Example of parametricity 1

f : (A : Type) → A → A

(λx .b) : A → B

f P R r : b = f B b
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Example of parametricity 2

f : (A : Type) → A∗ → A∗

R : A → B → Type

as : A∗

bs : B∗

rs : R∗ as bs

f P R rs : R∗ (f A as) (f B bs)
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Example of parametricity 2

f : (A : Type) → A∗ → A∗

g : A → B

R a b := (g a = b)

R∗ as bs = (g∗ as = bs)

as : A∗

f P R rs : g∗(f A as) = f B (g∗ as)

Examples:

f = reverse, g = code : Char → N
f = tail, g = inc : N → N

Not example:

f = odds : N → N, g = inc : N → N
inc∗ (odds [1, 2, 3]) = inc∗ [1, 3] = [2, 4] ̸= [3] = odds (inc∗ [1, 2, 3])
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Questions

how many such f s?

f : (A : Type) → A → A 1

f : (A : Type) → A → A → A ?a

f : (A : Type) → A ?b

f : (A : Type) → A → (A → A) → A ?c
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Questions

how many such f s?

f : (A : Type) → A∗ → A∗ 1

f : (A : Type) → A → A → A 2

f : (A : Type) → A 0

f : (A : Type) → A → (A → A) → A ω
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Theories of representation-independence
Preservation of . . .

▶ homomorphisms

▶ natural transformation (category theory)

▶ does not work for higher order (work towards this: directed
type theory)

▶ the above two examples are covered

▶ relations

▶ parametricity

▶ inconsistent with LEM

▶ isomorphisms

▶ Homotopy Type Theory, Voevodsky’s univalence

▶ consistent with LEM
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Example which cannot be derived from naturality

f : (A : Type) → A → (A → A) → A

R : A0 → A1 → Type

zR : R z0 z1

sR : ∀a0, a1 .R a0 a1 → R (s0 a0) (s1 a1)

f P R zR sR : R (f A0 z0 s0) (f A1 z1 s1)
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Example which cannot be derived from naturality

f : (A : Type) → A → (A → A) → A

N is the initial “pointed set with an endofunction” (PSE).

Nat := (A : Type) → A → (A → A) → A

zero := λA z s.z

suc n := λA z s.s (n A z s)

iteA z s n := n A z s

iteA z s zero = z

iteA z s (suc n) = s (iteA z s n)

This is already weakly initial.
We need that for any other PSE-homomorphism g from
(Nat, zero, suc) to (A, z , s), we have that g = iteA z s.
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Example which cannot be derived from naturality

(Nat, zero, suc)

(A0, z0, s0) (A1, z1, s1)

iteA0 z0 s0 iteA1 z1 s1

g

From parametricity for an n : Nat taking R be the graph of g .
We use that g is a PSE-homomorphism.
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Example which cannot be derived from naturality

In particular:

(Nat, zero, suc)

(Nat, zero, suc) (A, z , s)

ite Nat zero suc iteA z s

iteA z s

That is:
iteA z s (ite Nat zero suc n) = iteA z s n
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Example which cannot be derived from naturality

In particular:

(Nat, zero, suc)

(Nat, zero, suc) (A, z , s)

ite Nat zero suc iteA z s

iteA z s

That is:
iteA z s (nNat zero suc) = n A z s
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Example which cannot be derived from naturality

In particular:

(Nat, zero, suc)

(Nat, zero, suc) (A, z , s)

ite Nat zero suc iteA z s

iteA z s

That is:
nNat zero sucA z s = n A z s
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Example which cannot be derived from naturality

In particular:

(Nat, zero, suc)

(Nat, zero, suc) (A, z , s)

ite Nat zero suc iteA z s

iteA z s

That is:
nNat zero suc = n
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Example which cannot be derived from naturality

And we reach our goal by:

(Nat, zero, suc)

(Nat, zero, suc) (A, z , s)

ite Nat zero suc iteA z s

g

That is:
g (ite Nat zero suc n) = iteA z s n
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Example which cannot be derived from naturality

And we reach our goal by:

(Nat, zero, suc)

(Nat, zero, suc) (A, z , s)

ite Nat zero suc iteA z s

g

That is:
g (nNat zero suc) = iteA z s n

24 / 29



Example which cannot be derived from naturality

And we reach our goal by:

(Nat, zero, suc)

(Nat, zero, suc) (A, z , s)

ite Nat zero suc iteA z s

g

That is:
g n = iteA z s n
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Example which cannot be derived from naturality

And we reach our goal by:

(Nat, zero, suc)

(Nat, zero, suc) (A, z , s)

ite Nat zero suc iteA z s

g

That is:
g = iteA z s
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Parametricity for type theory

▶ Bernardy–Jansson–Paterson (2012) extended parametricity to
Martin-Löf’s type theory

▶ A language for the structuralist formalisation of mathematics,
e.g. N is defined as the initial PSE.

▶ Proof assistants: Lean, Coq, Agda

▶ The parametricity theorem can be expressed in the same
language.

▶ But is still a metatheorem.

▶ Internalisation?

▶ A structuralist language which knows that it is structuralist.

▶ Difficulty: the witness of parametricity has to be parametric
itself.

27 / 29



Iterated external parametricity

A AP APP APPP . . .
0A

1A
0AP

1AP

(0A)
P

(1A)
P

0APP , (0AP )P, (0A)
PP

1APP , (1AP )P, (1A)
PP
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Iterated internal parametricity

A AP APP APPP . . .RA

0A

1A

RAP

(RA)
P

0AP

1AP

(0A)
P

(1A)
P

RAPP

(RAP )P

(RA)
PP

0APP , (0AP )P, (0A)
PP

1APP , (1AP )P, (1A)
PP

SA SAP

(SA)
P

▶ We need a syntax for this. Becomes very complicated.

▶ Thierry Coquand’s idea: AP := I → A.

▶ Issue: substructural.

▶ Our contribution:

▶ –P, 0– , 1– , R– , S– and 5 equations generate everything.

▶ Simple, structural syntax. Emergent geometry.

▶ It computes!

▶ Details: our paper “Internal parametricity, without an
interval”, POPL 2024.
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