Induction-induction Part 3

Constructing inductive-inductive types using a domain-specific type theory¹

Ambrus Kaposi

j.w.w. Thorsten Altenkirch, Péter Diviánszky and András Kovács

TYPES 2018 Braga 21 June 2018

 $^{^1}$ This work was supported by the European Union, co-financed by the European Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002) and COST Action EUTypes CA15123.

- Another specification of IITs
 - more syntactic than Fredrik's

- Another specification of IITs
 - more syntactic than Fredrik's

Constructing all IITs

- Another specification of IITs
 - more syntactic than Fredrik's

- Constructing all IITs
 - from a universal IIT

- Another specification of IITs
 - more syntactic than Fredrik's

- Constructing all IITs
 - from a universal IIT
 - conjecture:

inductive types $\xrightarrow{\text{Jakob method}}$ universal IIT $\xrightarrow{\text{this talk}}$ any IIT

Another specification of IITs

How to specify inductive types?

How to specify inductive types?

By listing their constructors.

A signature for an IIT is a context

A signature for an IIT is a context in a domain-specific type theory.

A signature for an IIT is a context in a domain-specific type theory.

- Variables
- Empty universe U with underline for El:

$$\frac{\Gamma \vdash a : U}{\Gamma \vdash \underline{a}}$$

Restricted function space:

$$\frac{\Gamma \vdash a : \mathsf{U} \qquad \Gamma, x : \underline{a} \vdash B}{\Gamma \vdash (x : a) \Rightarrow B} \qquad \frac{\Gamma \vdash t : (x : a) \Rightarrow B \qquad \Gamma \vdash u : \underline{a}}{\Gamma \vdash t u : B[x \mapsto u]}$$

A signature for an IIT is a context in a domain-specific type theory.

- Variables
- Empty universe U with underline for El:

$$\frac{\Gamma \vdash U}{\Gamma \vdash U} \qquad \frac{\Gamma \vdash a : U}{\Gamma \vdash \underline{a}}$$

Restricted function space:

$$\frac{\Gamma \vdash a : \mathsf{U} \qquad \Gamma, x : \underline{a} \vdash B}{\Gamma \vdash (x : a) \Rightarrow B} \qquad \frac{\Gamma \vdash t : (x : a) \Rightarrow B \qquad \Gamma \vdash u : \underline{a}}{\Gamma \vdash t u : B[x \mapsto u]}$$

Signature for natural numbers:

$$\Theta := (\cdot, \textit{Nat} : \mathsf{U}, \textit{zero} : \underline{\textit{Nat}}, \textit{suc} : \textit{Nat} \Rightarrow \underline{\textit{Nat}})$$

A signature for an IIT is a context in a domain-specific type theory.

- Variables
- Empty universe U with underline for El:

$$\frac{\Gamma \vdash a : U}{\Gamma \vdash \underline{a}}$$

Restricted function space:

$$\frac{\Gamma \vdash a : \mathsf{U} \qquad \Gamma, x : \underline{a} \vdash B}{\Gamma \vdash (x : a) \Rightarrow B} \qquad \frac{\Gamma \vdash t : (x : a) \Rightarrow B \qquad \Gamma \vdash u : \underline{a}}{\Gamma \vdash t u : B[x \mapsto u]}$$

Signature for natural numbers:

$$\Theta := (\cdot, Nat : U, zero : \underline{Nat}, suc : Nat \Rightarrow \underline{Nat})$$

Not possible:
$$(\cdot, T : U, evil : (T \Rightarrow \underline{T}) \Rightarrow \underline{T})$$

Standard model

$$\frac{\vdash \Gamma}{\Gamma^{A} \in \mathsf{Set}} \qquad \frac{\Gamma \vdash A}{A^{A} \in \Gamma^{A} \to \mathsf{Set}} \qquad \frac{\Gamma \vdash t : A}{t^{A} \in (\gamma \in \Gamma^{A}) \to A^{A}(\gamma)}$$

$$(\Gamma, x : A)^{A} \qquad := (\gamma \in \Gamma^{A}) \times A^{A}(\gamma)$$

$$U^{A}(\gamma) \qquad := \mathsf{Set}$$

$$((x : a) \Rightarrow B)^{A}(\gamma) := (\alpha \in a^{A}(\gamma)) \to B^{A}(\gamma, \alpha)$$

Standard model

$$\frac{\vdash \Gamma}{\Gamma^{A} \in \mathsf{Set}} \qquad \frac{\Gamma \vdash A}{A^{A} \in \Gamma^{A} \to \mathsf{Set}} \qquad \frac{\Gamma \vdash t : A}{t^{A} \in (\gamma \in \Gamma^{A}) \to A^{A}(\gamma)}$$

$$(\Gamma, x : A)^{A} \qquad := (\gamma \in \Gamma^{A}) \times A^{A}(\gamma)$$

$$U^{A}(\gamma) \qquad := \mathsf{Set}$$

$$((x : a) \Rightarrow B)^{A}(\gamma) := (\alpha \in a^{A}(\gamma)) \to B^{A}(\gamma, \alpha)$$

−^A on a context gives algebras for that signature.

E.g.
$$\Theta^{A} = (N \in Set) \times N \times (N \rightarrow N)$$

Logical relation interpretation

$$\frac{\vdash \Gamma}{\Gamma^{\mathsf{M}} \in \Gamma^{\mathsf{A}} \to \Gamma^{\mathsf{A}} \to \mathsf{Set}} \qquad \frac{\Gamma \vdash A}{A^{\mathsf{M}} \in \Gamma^{\mathsf{M}} \gamma \gamma' \to A^{\mathsf{A}} \gamma \to A^{\mathsf{A}} \gamma' \to \mathsf{Set}}$$

$$(\Gamma, x : A)^{\mathsf{M}}((\gamma, \alpha), (\gamma', \alpha')) := (\gamma_{\mathsf{M}} : \Gamma^{\mathsf{M}}(\gamma, \gamma')) \times A^{\mathsf{M}}(\gamma_{\mathsf{M}}, \alpha, \alpha')$$

$$U^{\mathsf{M}}(\gamma_{\mathsf{M}}, a, a') \qquad := a \to a' \to \mathsf{Set}$$

$$(\underline{a})^{\mathsf{M}}(\gamma_{\mathsf{M}}, \alpha, \alpha') \qquad := a^{\mathsf{M}}(\gamma_{\mathsf{M}}, \alpha, \alpha')$$

$$((x : a) \Rightarrow B)^{\mathsf{M}}(\gamma_{\mathsf{M}}, f, f') := (\alpha_{\mathsf{M}} \in a^{\mathsf{M}}(\gamma, \alpha, \alpha')) \to$$

$$B^{\mathsf{M}}((\gamma_{\mathsf{M}}, \alpha_{\mathsf{M}}), f(\alpha), f'(\alpha'))$$

Tweaked logical relation interpretation

$$\frac{\vdash \Gamma}{\Gamma^{\mathsf{M}} \in \Gamma^{\mathsf{A}} \to \Gamma^{\mathsf{A}} \to \mathsf{Set}} \qquad \frac{\Gamma \vdash A}{A^{\mathsf{M}} \in \Gamma^{\mathsf{M}} \gamma \gamma' \to A^{\mathsf{A}} \gamma \to A^{\mathsf{A}} \gamma' \to \mathsf{Set}}$$

$$(\Gamma, x : A)^{\mathsf{M}}((\gamma, \alpha), (\gamma', \alpha')) := (\gamma_{\mathsf{M}} : \Gamma^{\mathsf{M}}(\gamma, \gamma')) \times A^{\mathsf{M}}(\gamma_{\mathsf{M}}, \alpha, \alpha')$$

$$U^{\mathsf{M}}(\gamma_{\mathsf{M}}, a, a') \qquad := a \to a'$$

$$(\underline{a})^{\mathsf{M}}(\gamma_{\mathsf{M}}, \alpha, \alpha') \qquad := (a^{\mathsf{M}}(\gamma_{\mathsf{M}})(\alpha) = \alpha')$$

$$((x : a) \Rightarrow B)^{\mathsf{M}}(\gamma_{\mathsf{M}}, f, f') := (\alpha \in a^{\mathsf{A}}(\gamma)) \to$$

$$B^{\mathsf{M}}((\gamma_{\mathsf{M}}, \mathsf{refl}), f(\alpha), f'(a^{\mathsf{M}}(\gamma_{\mathsf{M}})(\alpha)))$$

Tweaked logical relation interpretation

$$\frac{\vdash \Gamma}{\Gamma^{\mathsf{M}} \in \Gamma^{\mathsf{A}} \to \Gamma^{\mathsf{A}} \to \mathsf{Set}} \qquad \frac{\Gamma \vdash A}{A^{\mathsf{M}} \in \Gamma^{\mathsf{M}} \gamma \gamma' \to A^{\mathsf{A}} \gamma \to A^{\mathsf{A}} \gamma' \to \mathsf{Set}}$$

$$(\Gamma, x : A)^{\mathsf{M}}((\gamma, \alpha), (\gamma', \alpha')) := (\gamma_{\mathsf{M}} : \Gamma^{\mathsf{M}}(\gamma, \gamma')) \times A^{\mathsf{M}}(\gamma_{\mathsf{M}}, \alpha, \alpha')$$

$$U^{\mathsf{M}}(\gamma_{\mathsf{M}}, a, a') \qquad := a \to a'$$

$$(\underline{a})^{\mathsf{M}}(\gamma_{\mathsf{M}}, \alpha, \alpha') \qquad := (a^{\mathsf{M}}(\gamma_{\mathsf{M}})(\alpha) = \alpha')$$

$$((x : a) \Rightarrow B)^{\mathsf{M}}(\gamma_{\mathsf{M}}, f, f') := (\alpha \in a^{\mathsf{A}}(\gamma)) \to$$

 $-^{\mathsf{M}}$ on a context gives homomorphisms of algebras. E.g.

$$\Theta^{M}((N,z,s),(N',z',s')) = (N_{M}:N\to N')\times (N_{M}(z)=z')\times ((\alpha\in N)\to N_{M}(s(\alpha))=s'(N_{M}(\alpha)))$$

 $B^{\mathsf{M}} \Big((\gamma_{\mathsf{M}}, \mathsf{refl}), f(\alpha), f'(\mathsf{a}^{\mathsf{M}}(\gamma_{\mathsf{M}})(\alpha)) \Big)$

Constructing inductive-inductive types

Constructing natural numbers

We use the domain-specific type theory:

$$\mathbb{N} := \{t \,|\, \Theta \vdash t : \underline{\mathit{Nat}}\}$$

Constructing natural numbers

We use the domain-specific type theory:

$$\mathbb{N} := \{t \,|\, \Theta \vdash t : \underline{\mathit{Nat}}\}$$

N.B.

$$\Theta = (\cdot, \textit{Nat} : \mathsf{U}, \textit{zero} : \underline{\textit{Nat}}, \textit{suc} : \textit{Nat} \Rightarrow \underline{\textit{Nat}})$$

Constructing natural numbers

We use the domain-specific type theory:

$$\mathbb{N} := \{ t \, | \, \Theta \vdash t : \underline{\mathit{Nat}} \}$$

N.B.

$$\Theta = (\cdot, Nat : U, zero : \underline{Nat}, suc : Nat \Rightarrow \underline{Nat})$$

Constructors:

$$\mathsf{zero} := \mathsf{zero} \in \mathbb{N}$$

$$\operatorname{\mathsf{suc}}(n\in\mathbb{N}):=\operatorname{\mathsf{suc}} n\in\mathbb{N}$$

Recursor for N

We need:

$$\mathsf{rec}_\mathbb{N}: \mathbb{N} \to (x:\Theta^\mathsf{A}) \to \mathsf{proj}_1(x)$$

Recursor for N

We need:

$$\mathsf{rec}_\mathbb{N}: \mathbb{N} \to (x:\Theta^\mathsf{A}) \to \mathsf{proj}_1(x)$$

The standard interpretation of $t \in \mathbb{N}$ i.e. $\Theta \vdash t : \underline{Nat}$:

$$t^{\mathsf{A}} \in (x \in \Theta^{\mathsf{A}}) \to \underbrace{(\underbrace{\mathit{Nat}})^{\mathsf{A}}(x)}_{=\mathsf{proj}_1(x)}$$

Recursor for N

We need:

$$\mathsf{rec}_{\mathbb{N}}: \mathbb{N} \to (x: \Theta^{\mathsf{A}}) \to \mathsf{proj}_1(x)$$

The standard interpretation of $t \in \mathbb{N}$ i.e. $\Theta \vdash t : \underline{Nat}$:

$$t^{\mathsf{A}} \in (x \in \Theta^{\mathsf{A}}) \to \underbrace{(\underbrace{\mathit{Nat}})^{\mathsf{A}}(x)}_{=\mathsf{proj}_1(x)}$$

$$\operatorname{rec}_{\mathbb{N}}(t) := t^{\mathsf{A}}$$

Model for the initial algebra

Fix a
$$\Theta$$
.

$$\frac{\vdash \Gamma}{\Gamma^C \in (\Theta \vdash \nu : \Gamma) \to \Gamma^A}$$

Model for the initial algebra

Fix a
$$\Theta$$
.

$$\frac{\vdash \Gamma}{\Gamma^{\mathsf{C}} \in (\Theta \vdash \nu : \Gamma) \to \Gamma^{\mathsf{A}}}$$

On the universe:

$$\mathsf{U}^\mathsf{C}(\nu, a) := \{ t \, | \, \Theta \vdash t : \underline{a} \}$$

Model for the initial algebra

Fix a Θ .

$$\frac{\vdash \Gamma}{\Gamma^{\mathsf{C}} \in (\Theta \vdash \nu : \Gamma) \to \Gamma^{\mathsf{A}}}$$

On the universe:

$$\mathsf{U}^\mathsf{C}(\nu, a) := \{ t \, | \, \Theta \vdash t : \underline{a} \}$$

Initial algebra for Θ is $\Theta^{C}(id_{\Theta}) \in \Theta^{A}$.

Model for the recursor

Fix a Θ and a $\theta \in \Theta^A$.

$$\frac{\vdash \Gamma}{\Gamma^{\mathsf{R}} \in (\Theta \vdash \nu : \Gamma) \to \Gamma^{\mathsf{M}}(\Gamma^{\mathsf{C}}(\nu), \nu^{\mathsf{A}}(\theta))}$$

Model for the recursor

Fix a Θ and a $\theta \in \Theta^A$.

$$\frac{\vdash \Gamma}{\Gamma^{\mathsf{R}} \in (\Theta \vdash \nu : \Gamma) \to \Gamma^{\mathsf{M}}(\Gamma^{\mathsf{C}}(\nu), \nu^{\mathsf{A}}(\theta))}$$

On the universe:

$$\mathsf{U}^\mathsf{R}(\nu,a)(t) := t^\mathsf{A}(\theta)$$

Model for the recursor

Fix a Θ and a $\theta \in \Theta^A$.

$$\frac{\vdash \Gamma}{\Gamma^{\mathsf{R}} \in (\Theta \vdash \nu : \Gamma) \to \Gamma^{\mathsf{M}}(\Gamma^{\mathsf{C}}(\nu), \nu^{\mathsf{A}}(\theta))}$$

On the universe:

$$\mathsf{U}^\mathsf{R}(\nu,a)(t) := t^\mathsf{A}(\theta)$$

Recursor is given by $\Theta^{R}(id_{\Theta}) \in \Theta^{M}(initial \text{ algebra for } \Theta, \theta)$.

Summary

Domain-specific type theory for signatures.

We do universal algebra by defining models of this type theory.

Standard model: algebras

Tweaked logical relations: algebra homomorphisms

Model where U is terms: initial algebra

Model where U is the standard interpretation: recursor

Logical predicates: families
Tweaked dependent logical relations: sections

Tweaked dependent logical relations: Sections

Model where U is logical predicate translation: eliminator

Summary

Domain-specific type theory for signatures.

We do universal algebra by defining models of this type theory.

Standard model: algebras

Tweaked logical relations: algebra homomorphisms

Model where U is terms: initial algebra

Model where U is the standard interpretation: recursor

Logical predicates: families
Tweaked dependent logical relations: sections

Model where U is logical predicate translation: eliminator

It seems that this extends to quotient inductive-inductive types.

Challenge: higher inductive-inductive types?

CwF of CwFs

standard model	algebras	contexts
tweaked logical relations	homomorphisms	substitutions
logical predicates	families	types
tweaked dependent logical relations	sections	terms
reflexivity in the reflexive graph model	identity morphism	identity substitution
transitivity in the setoid model	morphisms composition	substitutions composition
groupoid law in the groupoid model	associativity	substitution law

15 / 16

CwF of CwFs

standard model	algebras	contexts
tweaked logical relations	homomorphisms	substitutions
logical predicates	families	types
tweaked dependent logical relations	sections	terms
reflexivity in the reflexive graph model	identity morphism	identity substitution
transitivity in the setoid model	morphisms composition	substitutions composition
groupoid law in the groupoid model	associativity	substitution law

Nice internal language for universal algebra.

15 / 16

System F impredicative encoding:

$$\mathbb{N} := ((x : \Theta^{\mathsf{A}}) \to \mathsf{proj}_1(x))$$

System F impredicative encoding:

$$\mathbb{N} := ((x : \Theta^{\mathsf{A}}) \to \mathsf{proj}_1(x))$$

N.B.

$$\Theta^{\mathsf{A}} = (\mathit{N} \in \mathsf{Set}) \times \mathit{N} \times (\mathit{N} \to \mathit{N})$$

System F impredicative encoding:

$$\mathbb{N} := ((x : \Theta^{\mathsf{A}}) \to \mathsf{proj}_1(x))$$

N.B.

$$\Theta^{\mathsf{A}} = (\mathsf{N} \in \mathsf{Set}) \times \mathsf{N} \times (\mathsf{N} \to \mathsf{N})$$

Problem: given an $f \in \Theta^{M}(x, x')$ and an $n \in \mathbb{N}$, $f(n(x)) \stackrel{?}{=} n(x')$

System F impredicative encoding:

$$\mathbb{N} := ((x : \Theta^{\mathsf{A}}) \to \mathsf{proj}_1(x))$$

N.B.

$$\Theta^{\mathsf{A}} = (\mathsf{N} \in \mathsf{Set}) \times \mathsf{N} \times (\mathsf{N} \to \mathsf{N})$$

Problem: given an $f \in \Theta^{M}(x,x')$ and an $n \in \mathbb{N}$, $f(n(x)) \stackrel{?}{=} n(x')$

Solution: let's build this in the definition!

$$\mathbb{N} := (n \in (x : \Theta^{A}) \to \operatorname{proj}_{1}(x)) \times (\forall x, x', f.f(n(x)) = n(x'))$$