Induction-induction Part 3

Constructing inductive-inductive types using a domain-specific type theory?
Ambrus Kaposi

j-w.w. Thorsten Altenkirch, Péter Dividnszky and Andrds Kovéacs

TYPES 2018
Braga
21 June 2018

SZECHENYI @
Eurépai Unié

Eurépai Szocidlis

Alap

MAGYARORSZAG " —
Pty eill BEFEKTETES A JOVOBE

This work was supported by the European Union, co-financed by the European Social Fund
(EFOP-3.6.3-VEKOP-16-2017-00002) and COST Action EUTypes CA15123.
1/16

Contents

@ Another specification of ITs
» more syntactic than Fredrik's

2/16

Contents

@ Another specification of ITs
» more syntactic than Fredrik's

@ Constructing all lITs

2/16

Contents

@ Another specification of ITs
» more syntactic than Fredrik's

@ Constructing all lITs
» from a universal IIT

2

16

Contents

@ Another specification of ITs
» more syntactic than Fredrik’s

@ Constructing all lITs

» from a universal IIT
» conjecture:

inductive types M» universal IIT M» any lIT

2/16

Another specification of IITs

/16

How to specify inductive types?

/16

How to specify inductive types?

By listing their constructors.

/16

What does it mean to list the constructors?

/16

What does it mean to list the constructors?

A signature for an IIT is a context

/16

What does it mean to list the constructors?

A signature for an IIT is a context in a domain-specific type theory.

16

What does it mean to list the constructors?

A signature for an IIT is a context in a domain-specific type theory.
@ Variables

@ Empty universe U with underline for El:

Na:u
r=u MN-a

@ Restricted function space:

Na:u Nx:akFB N-t:(x:a)=~8 Nu:a
ME(x:a)=B M tu: B[x— u]

5/16

What does it mean to list the constructors?

A signature for an IIT is a context in a domain-specific type theory.
@ Variables

@ Empty universe U with underline for El:

Na:u
r=u MN-a

@ Restricted function space:

Na:u Nx:akFB N-t:(x:a)=~8 Nu:a
ME(x:a)=B M tu: B[x— u]

Signature for natural numbers:
© := (-, Nat : U, zero : Nat, suc : Nat = Nat)

5/16

What does it mean to list the constructors?

A signature for an IIT is a context in a domain-specific type theory.
@ Variables

@ Empty universe U with underline for El:

Na:u
r=u MN-a

@ Restricted function space:

Na:u Nx:akFB N-t:(x:a)=~8 Nu:a
ME(x:a)=B M tu: B[x— u]

Signature for natural numbers:
© := (-, Nat : U, zero : Nat, suc : Nat = Nat)

Not possible: (-, T : U, evil : (T = T)=T)

5/16

Standard model

FI r-A rFt:A

M € Set AR € TA — Set th e (v e TA) — AA(Y)

(I, x: AA = (y e M) x AA(v)
UA(Y) := Set
((x:a) = B)A(Y) == (a € (7)) = BA(7,)

6

16

Standard model

FI r-A rFt:A
M € Set AR € TA — Set th e (v e TA) — AA(Y)

(I, x: AA = (y e M) x AA(v)

UA(Y) := Set

((x:a) = B)A(7) = (a € 8*(7)) = BA(7,q)
A

— on a context gives algebras for that signature.
E.g. ©* = (N € Set) x N x (N — N)

6/16

Logical relation interpretation

- T [-A

™MerA 5 TA - Set AM e TM o/ AR~ 5 AR Y 5 Set

(r X A)M((77a)7(7/7a,)) = (’YM : rM(777/)) X AM(7M7a7 O/)
UMy, a, &) =a—a — Set

@M(ym, o, ') = aM(ym, a, &)

((x:a)= B (ym, £, 1) = (am € a"(v,a,0")) =

BY (- am). (@), F'(a"))

7/16

Tweaked logical relation interpretation

T r-A
™MerA 5 TA - Set AM e TM A/ ARy 5 AR S 5 Set

(T s AM((r, @), (7, @) = (o = TV (7:7)) x AM (9w, @, o)
uM (fyM,a a') =a—a

(@)™(vm, &) = (a"(ym) (@) = o)
(x:a) = BM(ywm, f.f") = (a e ad(y)) =

B (s ref).). 7/ (M (aa)(@))

8/16

Tweaked logical relation interpretation

T r-A
™MerA 5 TA - Set AM e TM A/ ARy 5 AR S 5 Set

(Mx: AM((y,0), (7, 0) = (v - TM(1,7)) x AM(vm, @,)
uM (fyM,a a') =a—a
M (vm, o, ') = (a"(ym) (@) = o)

(a
(x:a)= B)(ym, 1) = (a€a(y) =
B™ (v refl), £(a), ' (M () ())

—M on a context gives homomorphisms of algebras. E.g.

OM((N, z,s),(N',Z,s")) = (Np : N = N') x (Np(z) = 2')x
((a € N) = Ny(s(a)) = s'(Nu(a)))

8/16

Constructing inductive-inductive types

9/16

Constructing natural numbers

We use the domain-specific type theory:

N:={t|OF t: Nat}

10/16

Constructing natural numbers

We use the domain-specific type theory:
N:={t|OF t: Nat}

N.B.
© = (-, Nat : U, zero : Nat, suc : Nat = Nat)

10/16

Constructing natural numbers

We use the domain-specific type theory:

N:={t|OF t: Nat}
N.B.
© = (-, Nat : U, zero : Nat, suc : Nat = Nat)
Constructors:

zero := zero € N

suc(n e N):=sucneN

10/16

Recursor for N

We need:
recy : N = (x : ©*) = proj; (x)

11/16

Recursor for N

We need:
recy : N = (x : ©*) = proj; (x)

The standard interpretation of t € N i.e. © -t : Nat:

th € (x € ©*) = (Nat)”(x)
i1 (x)
=projy (x

11/16

Recursor for N

We need:
recy : N = (x : ©*) = proj; (x)

The standard interpretation of t € N i.e. © -t : Nat:

th € (x € ©*) = (Nat)”(x)
i1 (x)
=projy (x

11/16

Model for the initial algebra

Fix a ©.
-

Ce@rv:MN)—rA

12/16

Model for the initial algebra

Fix a ©.
-

rCec@Fv:MN—rA

On the universe:
US(v,a) .= {t|©F t:a}

12 /16

Model for the initial algebra

Fix a ©.
-

rCec@Fv:MN—rA

On the universe:
US(v,a) .= {t|©F t:a}

Initial algebra for © is ©%(idg) € OA.

12 /16

Model for the recursor

Fixa © and a 6 € ©A,

T
MRe@Fv:N) —MT<yw),vA0))

13/16

Model for the recursor

Fixa © and a 6 € ©A,

T
MRe@Fv:N) —MT<yw),vA0))

On the universe:

UR(v, a)(t) = tA(0)

13 /16

Model for the recursor

Fixa © and a 6 € ©A,

T
MRe@Fv:N) —MT<yw),vA0))

On the universe:

UR(v, a)(t) = tA(0)

Recursor is given by ©R(idg) € ©M(initial algebra for ©,6).

13 /16

Summary

Domain-specific type theory for signatures.

We do universal algebra by defining models of this type theory.

Standard model: algebras

Tweaked logical relations: algebra homomorphisms
Model where U is terms: initial algebra

Model where U is the standard interpretation: recursor

Logical predicates: families

Tweaked dependent logical relations: sections

Model where U is logical predicate translation: eliminator

14 /16

Summary

Domain-specific type theory for signatures.

We do universal algebra by defining models of this type theory.

Standard model:

Tweaked logical relations:

Model where U is terms:

Model where U is the standard interpretation:
Logical predicates:

Tweaked dependent logical relations:

Model where U is logical predicate translation:

algebras

algebra homomorphisms

initial algebra
recursor
families
sections
eliminator

It seems that this extends to quotient inductive-inductive types.

Challenge: higher inductive-inductive types?

14 /16

CwF of CwFs

standard model
tweaked logical relations
logical predicates

tweaked dependent
logical relations

reflexivity in the reflexive
graph model

transitivity in the setoid
model

groupoid law in the
groupoid model

algebras
homomorphisms
families

sections

identity morphism

morphisms composition

associativity

contexts
substitutions
types

terms

identity substitution

substitutions composition

substitution law

15/16

CwF of CwkFs

standard model
tweaked logical relations
logical predicates

tweaked dependent
logical relations

reflexivity in the reflexive
graph model

transitivity in the setoid
model

groupoid law in the
groupoid model

algebras
homomorphisms
families

sections

identity morphism

morphisms composition

associativity

Nice internal language for universal algebra.

contexts
substitutions
types

terms

identity substitution

substitutions composition

substitution law

15/16

Constructing inductive types a la Awodey-Frey-Speight

System F impredicative encoding:

N := ((x : ©*) = proj;(x))

16/16

Constructing inductive types a la Awodey-Frey-Speight

System F impredicative encoding:
N = ((x : ©*) = proj;(x))

N.B.
©* = (N € Set) x N x (N = N)

16 /16

Constructing inductive types a la Awodey-Frey-Speight

System F impredicative encoding:

N := ((x : ©*) = proj;(x))
N.B.
©” = (N € Set) x N x (N — N)

Problem: given an f € @M(x, x') and an n € N, f(n(x)) L n(x")

16 /16

Constructing inductive types a la Awodey-Frey-Speight

System F impredicative encoding:

N := ((x : ©*) = proj;(x))
N.B.
©” = (N € Set) x N x (N — N)

Problem: given an f € @M(x, x') and an n € N, f(n(x)) L n(x")

Solution: let's build this in the definition!

N :=(n € (x: @) = proj;(x)) x (¥x,x, f.f(n(x)) = n(x))

16

16

	Another specification of IITs
	Constructing inductive-inductive types

