
Normalisation by Evaluation for Dependent Types

Ambrus Kaposi
Eötvös Loránd University, Budapest, Hungary

(joint work with Thorsten Altenkirch of Nottingham)

TYPES, Нови Сад
25 May 2016

Introduction

I Goal:

I Prove normalisation for a type theory with dependent types

I Using the metalanguage of type theory itself

I Structure of the talk:

I Representing type theory in type theory

I Specifying normalisation

I NBE for simple types

I NBE for dependent types

2 / 31

Representing type theory in type theory

Representing type theory in type theory

3 / 31

Representing type theory in type theory

Simple type theory in idealised Agda
data Ty : Set where
ι : Ty
⇒ : Ty → Ty → Ty

data Con : Set where
• : Con
, : Con → Ty → Con

data Var : Con → Ty → Set where
zero : Var (Γ , A) A
suc : Var Γ A → Var (Γ , B) A

data Tm : Con → Ty → Set where
var : Var Γ A → Tm Γ A
lam : Tm (Γ , A) B → Tm Γ (A⇒ B)

app : Tm Γ (A⇒ B) → Tm Γ A → Tm Γ B

4 / 31

Representing type theory in type theory

Simple type theory in idealised Agda
data Ty : Set where
ι : Ty
⇒ : Ty → Ty → Ty

data Con : Set where
• : Con
, : Con → Ty → Con

data Var : Con → Ty → Set where
zero : Var (Γ , A) A
suc : Var Γ A → Var (Γ , B) A

data Tm : Con → Ty → Set where
var : Var Γ A → Tm Γ A
lam : Tm (Γ , A) B → Tm Γ (A⇒ B)

app : Tm Γ (A⇒ B) → Tm Γ A → Tm Γ B

5 / 31

No preterms!

Representing type theory in type theory

A typed syntax of dependent types (i)
I Types depend on contexts.
⇒ We need induction induction.

data Con : Set
data Ty : Con → Set

6 / 31

Representing type theory in type theory

A typed syntax of dependent types (ii)
I Types depend on contexts.
⇒ We need induction induction.

I Substitutions are mentioned in the application rule:

app : Tm Γ (ΠAB)→ (a : Tm ΓA)→ Tm Γ (B [a])

⇒ We define an explicit substitution calculus.

data Con : Set
data Ty : Con → Set
data Tms : Con → Con → Set
data Tm : (Γ : Con) → Ty Γ → Set
[] : Ty Γ → Tms ∆ Γ → Ty ∆

...

7 / 31

Representing type theory in type theory

A typed syntax of dependent types (iii)
I Types depend on contexts.
⇒ We need induction induction.

I Substitutions are mentioned in the application rule:
⇒ We define an explicit substitution calculus.

I The following conversion rule for terms:

Γ ` A ∼ B Γ ` t : A
Γ ` t : B

⇒ Conversion (the relation including β, η) needs to be defined
mutually with the syntax.

I We need to add 4 new members to the inductive inductive
definition: ∼ for contexts, types, substitutions and terms.

8 / 31

Representing type theory in type theory

Representing conversion
I Lots of boilerplate:

I The ∼ relations are equivalence relations
I Coercion rules
I Congruence rules
I We need to work with setoids

I The identity type _≡_ is an equivalence relation with coercion
and congruence laws.

I Higher inductive types are an idea from homotopy type theory:
constructors for equalities.

I We add the conversion rules as constructors: e.g.
β : app (lam t) u ≡ t[u].

9 / 31

Representing type theory in type theory

QIITs

We formalise the syntax of type theory as a quotient inductive
inductive type (QIIT).

I A QIT is a HIT which is a set

I QITs are not the same as quotient types

10 / 31

Representing type theory in type theory

Using the syntax
I One defines functions from a QIIT using its eliminator.

I The arguments of the non-dependent eliminator form a model of
type theory, equivalent to Categories with Families.

record Model : Set where
field ConM : Set

TyM : ConM → Set
TmM : (Γ : ConM) → TyM Γ → Set
lamM : TmM (Γ ,M A) BM → TmM Γ (ΠM A B)

βM : appM (lamM t) a ≡ t [a]M

...

I The eliminator says that the syntax is the initial model.
11 / 31

Specifying normalisation

Specifying normalisation

12 / 31

Specifying normalisation

Specifying normalisation

Neutral terms and normal forms (typed!):

n ::= x | n v Ne Γ A
v ::= n | λ x .v Nf Γ A

Normalisation is an isomorphism:

completeness norm ↓
Tm ΓA
Nf ΓA

↑ p–q stability

Soundness is given by congruence of equality:

t ≡ t ′ → norm t ≡ norm t ′

13 / 31

Specifying normalisation

Normalisation by Evaluation (NBE)
Syntax Model

Normal forms eliminator

quote

I First formulation (Berger and Schwichtenberg, 1991)

I Simply typed case (Altenkirch, Hofmann, Streicher 1995)

I Dependent types using untyped realizers (Abel, Coquand, Dybjer,
2007)

14 / 31

NBE for simple types

NBE for simple types

15 / 31

NBE for simple types

The presheaf model

I Presheaf models are proof-relevant versions of Kripke models.

I They are parameterised over a category, here we choose REN:
objects are contexts, morphisms are lists of variables.

I A context Γ is interpreted as a presheaf JΓK : RENop → Set.

I Given another context ∆ we have JΓK∆ : Set.

I Given a renaming ∆
β−→ Θ, there is a JΓKΘ

JΓKβ−→ JΓK∆.

I Types are presheaves too: JAK : RENop → Set

I JιK∆ := Nf ∆ ι

16 / 31

NBE for simple types

The presheaf model

I Presheaf models are proof-relevant versions of Kripke models.

I They are parameterised over a category, here we choose REN:
objects are contexts, morphisms are lists of variables.

I A context Γ is interpreted as a presheaf JΓK : RENop → Set.

I Given another context ∆ we have JΓK∆ : Set.

I Given a renaming ∆
β−→ Θ, there is a JΓKΘ

JΓKβ−→ JΓK∆.

I Types are presheaves too: JAK : RENop → Set

I JιK∆ := Nf ∆ ι

16 / 31

NBE for simple types

The presheaf model

I Presheaf models are proof-relevant versions of Kripke models.

I They are parameterised over a category, here we choose REN:
objects are contexts, morphisms are lists of variables.

I A context Γ is interpreted as a presheaf JΓK : RENop → Set.

I Given another context ∆ we have JΓK∆ : Set.

I Given a renaming ∆
β−→ Θ, there is a JΓKΘ

JΓKβ−→ JΓK∆.

I Types are presheaves too: JAK : RENop → Set

I JιK∆ := Nf ∆ ι

16 / 31

NBE for simple types

The presheaf model

I Presheaf models are proof-relevant versions of Kripke models.

I They are parameterised over a category, here we choose REN:
objects are contexts, morphisms are lists of variables.

I A context Γ is interpreted as a presheaf JΓK : RENop → Set.

I Given another context ∆ we have JΓK∆ : Set.

I Given a renaming ∆
β−→ Θ, there is a JΓKΘ

JΓKβ−→ JΓK∆.

I Types are presheaves too: JAK : RENop → Set

I JιK∆ := Nf ∆ ι

16 / 31

NBE for simple types

Quotation

The quote function is a natural transformation.

quoteA : JAK →̇ Nf – A

At a given context we have:

quoteA Γ : JAKΓ → Nf ΓA

It is defined mutually with unquote:

unquoteA : Ne – A →̇ JAK

17 / 31

NBE for simple types

Quote and unquote

Ne – A Σ (Tm – A× JAK) RA Nf – A

Tm – A

unquote A quote A

18 / 31

NBE for simple types

With completeness

Ne – A Σ (Tm – A× JAK) RA Nf – A

Tm – A

unquote′A quote′A

p–q p–q
proj

RA is a presheaf logical relation between the syntax and the presheaf
model. It is equality at the base type.

19 / 31

NBE for dependent types

NBE for dependent types

20 / 31

NBE for dependent types

Defining quote, first try

Nes – Γ Σ (Tms – Γ× JΓK) RΓ Nfs – Γ

Tms – Γ

unquoteΓ quoteΓ

When we try to define this quote for function space, we need the
equation quoteA ◦ unquoteA ≡ id.
Let’s define quote and its completeness mutually!

21 / 31

NBE for dependent types

Defining quote, first try

Nes – Γ Σ (Tms – Γ× JΓK) RΓ Nfs – Γ

Tms – Γ

unquoteΓ quoteΓ

When we try to define this quote for function space, we need the
equation quoteA ◦ unquoteA ≡ id.

Let’s define quote and its completeness mutually!

21 / 31

NBE for dependent types

Defining quote, first try

Nes – Γ Σ (Tms – Γ× JΓK) RΓ Nfs – Γ

Tms – Γ

unquoteΓ quoteΓ

When we try to define this quote for function space, we need the
equation quoteA ◦ unquoteA ≡ id.
Let’s define quote and its completeness mutually!

21 / 31

NBE for dependent types

Defining quote, second try

Nes – Γ Σ (Tms – Γ× JΓK) RΓ Nfs – Γ

Tms – Γ

unquoteΓ quoteΓ

p–q p–q
proj

For unquote at the function space we need to define a semantic
function which works for every input, not necessarily related by the
relation. But quote needs ones which are related!

22 / 31

NBE for dependent types

Defining quote, second try

Nes – Γ Σ (Tms – Γ× JΓK) RΓ Nfs – Γ

Tms – Γ

unquoteΓ quoteΓ

p–q p–q
proj

For unquote at the function space we need to define a semantic
function which works for every input, not necessarily related by the
relation. But quote needs ones which are related!

22 / 31

NBE for dependent types

Defining quote, third try

Nes – Γ Σ (Tms – Γ) PΓ Nfs – Γ

Tms – Γ

unquoteΓ quoteΓ

p–q p–q
proj

Use a proof-relevant logical predicate. At the base type it says that
there exists a normal form which is equal to the term.
Instance of categorical glueing.

23 / 31

Extra slides

Extra slides

24 / 31

Extra slides

The presheaf model and quote

For dependent types, types are interpreted as families of presheaves.

JΓK : RENop → Set

JΓ ` AK : (∆ : REN)→ JΓK∆ → Set

Quote for contexts is the same, but for types it is more subtle:

quoteΓ : JΓK →̇ Tms – Γ

quoteΓ`A : (α : JΓK∆)→ JAK∆ α→ Nf ∆
(
A[quoteΓ,∆ α]

)

25 / 31

Extra slides

The presheaf model and quote

For dependent types, types are interpreted as families of presheaves.

JΓK : RENop → Set

JΓ ` AK : (∆ : REN)→ JΓK∆ → Set

Quote for contexts is the same, but for types it is more subtle:

quoteΓ : JΓK →̇ Tms – Γ

quoteΓ`A : (α : JΓK∆)→ JAK∆ α→ Nf ∆
(
A[quoteΓ,∆ α]

)

25 / 31

Extra slides

Quotation
The quote function is a natural transformation.

quoteA : JAK →̇ Nf – A

For the base type it is the identity.

quoteι v := v

For function types:

quoteA→B ∆

(
f : ∀Θ.(β : Θ→ ∆)→ JAKΘ → JBKΘ

)
: Nf ∆ (A→ B)

:= lam
(
↑ Nf (∆,A)B

26 / 31

Extra slides

Quotation
The quote function is a natural transformation.

quoteA : JAK →̇ Nf – A

For the base type it is the identity.

quoteι v := v

For function types:

quoteA→B ∆

(
f : ∀Θ.(β : Θ→ ∆)→ JAKΘ → JBKΘ

)
: Nf ∆ (A→ B)

:= lam
(
quoteB,(∆,A)

(
↑ JBK∆,A

27 / 31

Extra slides

Quotation
The quote function is a natural transformation.

quoteA : JAK →̇ Nf – A

For the base type it is the identity.

quoteι v := v

For function types:

quoteA→B ∆

(
f : ∀Θ.(β : Θ→ ∆)→ JAKΘ → JBKΘ

)
: Nf ∆ (A→ B)

:= lam
(
quoteB,(∆,A)

(
f∆,A

↑ ∆,A→ ∆

28 / 31

Extra slides

Quotation
The quote function is a natural transformation.

quoteA : JAK →̇ Nf – A

For the base type it is the identity.

quoteι v := v

For function types:

quoteA→B ∆

(
f : ∀Θ.(β : Θ→ ∆)→ JAKΘ → JBKΘ

)
: Nf ∆ (A→ B)

:= lam
(
quoteB,(∆,A)

(
f∆,A wk (

↑ JAK∆,A

29 / 31

Extra slides

Quotation
The quote function is a natural transformation.

quoteA : JAK →̇ Nf – A

For the base type it is the identity.

quoteι v := v

For function types:

quoteA→B ∆

(
f : ∀Θ.(β : Θ→ ∆)→ JAKΘ → JBKΘ

)
: Nf ∆ (A→ B)

:= lam
(
quoteB,(∆,A)

(
f∆,A wk (

↑ JAK∆,A

We need to unquote neutral terms: unquoteA : Ne – A →̇ JAK.
30 / 31

Extra slides

Quotation
The quote function is a natural transformation.

quoteA : JAK →̇ Nf – A

For the base type it is the identity.

quoteι v := v

For function types:

quoteA→B ∆

(
f : ∀Θ.(β : Θ→ ∆)→ JAKΘ → JBKΘ

)
: Nf ∆ (A→ B)

:= lam
(
quoteB,(∆,A)

(
f∆,A wk (unquoteA (∆,A) zero)

))

We need to unquote neutral terms: unquoteA : Ne – A →̇ JAK.
31 / 31

	Representing type theory in type theory
	Specifying normalisation
	NBE for simple types
	NBE for dependent types
	Extra slides

