Normalisation by Evaluation for Dependent Types

Ambrus Kaposi
Eotvos Lorand University, Budapest, Hungary

(joint work with Thorsten Altenkirch of Nottingham)

TYPES, Hoeu Cag
25 May 2016

Introduction

» Goal:

» Prove normalisation for a type theory with dependent types

» Using the metalanguage of type theory itself

» Structure of the talk:

v

Representing type theory in type theory

v

Specifying normalisation

v

NBE for simple types

v

NBE for dependent types

2/31

Representing type theory in type theory

Representing type theory in type theory

3/31

Representing type theory in type theory

Simple type theory in idealised Agda

data Ty
L
=

data Var
zero
suc

data Tm
var
lam

app

. Set where

: Ty

= oty =Ty = Ty
data Con :
: Con

: Con — Ty — Con

: Con — Ty — Set where

: Var (', A) A

:VarT A — Var ([',B)A

: Con — Ty — Set where

:VarTA — TmT A

: Tm(T,A)B — TmT (A= B)

: TmlIT(A=B) - TmlTA - TmIB

Set where

4/31

Representing type theory in type theory

Simple type theory in idealised Agda

data Ty
L
j

data Var
zero
suc

data Tm
var
lam

app

: Set where

: Ty

Ty = Ty — Ty
data Con :
: Con

Set where

“No preterms!

; Con — Ty — Set where

: Var (', A) A

:VarT A — Var ([',B)A

: Con — Ty — Set where

:VarTA — TmT A

: Tm(T,A)B — TmT (A= B)

: TmlIT(A=B) - TmlTA - TmIB

5/31

Representing type theory in type theory

A typed syntax of dependent types (i)

» Types depend on contexts.
= We need induction induction.

data Con : Set
data Ty : Con — Set

6/31

Representing type theory in type theory

A typed syntax of dependent types (ii)

» Types depend on contexts.
= We need induction induction.

» Substitutions are mentioned in the application rule:
app: Tml(MAB) — (a: TmlA) — TmT (B]a)])
= We define an explicit substitution calculus.

data Con : Set

data Ty : Con — Set

data Tms : Con — Con — Set

dataTm : (I : Con) — Tyl — Set
[]: Tyl - Tms AT — Ty A

7/31

Representing type theory in type theory

A typed syntax of dependent types (iii)

» Types depend on contexts.
= We need induction induction.

» Substitutions are mentioned in the application rule:
= We define an explicit substitution calculus.

» The following conversion rule for terms:

r'FA~B Frt: A
r'-t:B

= Conversion (the relation including /3,) needs to be defined
mutually with the syntax.

» We need to add 4 new members to the inductive inductive
definition: ~ for contexts, types, substitutions and terms.

8/31

Representing type theory in type theory

Representing conversion
» Lots of boilerplate:

» The ~ relations are equivalence relations

Coercion rules

v

v

Congruence rules

We need to work with setoids

v

» The identity type = is an equivalence relation with coercion
and congruence laws.

» Higher inductive types are an idea from homotopy type theory:
constructors for equalities.

» We add the conversion rules as constructors: e.g.
B :app (lam t) u = t[u].

9/31

Representing type theory in type theory

QIITs

We formalise the syntax of type theory as a quotient inductive
inductive type (QIIT).

» A QIT is a HIT which is a set

» QITs are not the same as quotient types

10/31

Representing type theory in type theory

Using the syntax
» One defines functions from a QIIT using its eliminator.

» The arguments of the non-dependent eliminator form a model of
type theory, equivalent to Categories with Families.

record Model : Set where
field Con™ : Set
Ty’vI . Con™ — Set
TmM - (M : ConM) - TWMT - Set
lam™ = T™M (T MA)BM — TmM (MM A B)
M appM (lamMt)a = t[a M

» The eliminator says that the syntax is the initial model.

11/31

Specifying normalisation

Specifying normalisation

12/31

Specifying normalisation
Specifying normalisation
Neutral terms and normal forms (typed!):

nv Ne [A
AX .V NflC A

x|
n |

n
Vi
Normalisation is an isomorphism:

TmlA
completeness ' norm | I\Fﬁ T =1 Mistability

Soundness is given by congruence of equality:

t=t — normt=normt

13/31

Specifying normalisation

Normalisation by Evaluation (NBE)

Syntax Model

eliminator

quote

» First formulation (Berger and Schwichtenberg, 1991)
» Simply typed case (Altenkirch, Hofmann, Streicher 1995)

» Dependent types using untyped realizers (Abel, Coquand, Dybjer,
2007)

14/31

NBE for simple types

NBE for simple types

15 /31

NBE for simple types

The presheaf model

» Presheaf models are proof-relevant versions of Kripke models.

» They are parameterised over a category, here we choose REN:
objects are contexts, morphisms are lists of variables.

16 /31

NBE for simple types

The presheaf model

» Presheaf models are proof-relevant versions of Kripke models.

» They are parameterised over a category, here we choose REN:
objects are contexts, morphisms are lists of variables.

» A context I is interpreted as a presheaf [[] : REN°P — Set.
» Given another context A we have [[]a : Set.

» Given a renaming A R ©, thereis a [[e [[r—ﬂé IMa.

16 /31

NBE for simple types

The presheaf model

» Presheaf models are proof-relevant versions of Kripke models.

» They are parameterised over a category, here we choose REN:
objects are contexts, morphisms are lists of variables.

» A context I is interpreted as a presheaf [[] : REN°P — Set.
» Given another context A we have [[]a : Set.
» Given a renaming A N ©, thereis a [[o [[r—ﬂé [Ma-
» Types are presheaves too: [A] : REN°? — Set
> [Ja = NfA.

16 /31

NBE for simple types

The presheaf model

» Presheaf models are proof-relevant versions of Kripke models.

» They are parameterised over a category, here we choose REN:
objects are contexts, morphisms are lists of variables.

» A context I is interpreted as a presheaf [[] : REN°P — Set.
» Given another context A we have [[]a : Set.
» Given a renaming A N ©, thereis a [[o [[r—ﬂé [Ma-
» Types are presheaves too: [A] : REN°? — Set
> [Ja = NfA.

16 /31

NBE for simple types

Quotation

The quote function is a natural transformation.
quote, : [A] = Nf-A
At a given context we have:

quotesr : [Alr — NfT'A

It is defined mutually with unquote:

unquotey : Ne— A = [A]

17/31

NBE for simple types

Quote and unquote

unquote 4 quote A
Ne-A———— 1A]

Nf - A

18/31

NBE for simple types

With completeness

/ /
unquote, quote,

Ne—-A Y (Tm-Ax [A])Ra

Nf - A

R is a presheaf logical relation between the syntax and the presheaf
model. It is equality at the base type.

19/31

NBE for dependent types

NBE for dependent types

20/31

NBE for dependent types

Defining quote, first try

unquoter quoter
M ———Nfs-T

Nes—1T

21/31

NBE for dependent types

Defining quote, first try

unquoter quoter

Nes—T Ir —— Nfs—

When we try to define this quote for function space, we need the
equation quote, o unquote, = id.

r

21/31

NBE for dependent types

Defining quote, first try

unquoter quoter

Nes—T Ir —— Nfs—

When we try to define this quote for function space, we need the
equation quote, o unquote, = id.
Let's define quote and its completeness mutually!

r

21/31

NBE for dependent types

Defining quote, second try

unquote uote
O s (Tms =T x [Rr —— T Nfs—T

Nes—1T

r_ proJ r_1

Tms-T

22/31

NBE for dependent types

Defining quote, second try

unquoter quoter

Nes—T Y (Tms-T x [I)Rr —————— Nfs—T

r_7 proj

Tms-T

For unquote at the function space we need to define a semantic
function which works for every input, not necessarily related by the
relation. But quote needs ones which are related!

22/31

NBE for dependent types

Defining quote, third try

unquoter quoter
Nes—T Y (Tms—-T)Pr Nfs—T
r_" proj r_"
Tms—T

Use a proof-relevant logical predicate. At the base type it says that
there exists a normal form which is equal to the term.
Instance of categorical glueing.

23/31

Extra slides

Extra slides

24/31

Extra slides

The presheaf model and quote
For dependent types, types are interpreted as families of presheaves.

[[] :REN® — Set
[FFA]:(A:REN) = [[]a — Set

25/31

Extra slides

The presheaf model and quote

For dependent types, types are interpreted as families of presheaves.

[[] :REN® — Set
[FFA]:(A:REN) = [[]a — Set

Quote for contexts is the same, but for types it is more subtle:

quoter] = Tms—-T
quoterr4 : (a: [I]a) — [A]la o — Nf A (A[quoterA a])

25/31

Extra slides

Quotation

The quote function is a natural transformation.
quote, : [A] = Nf-A
For the base type it is the identity.
quote, v := v
For function types:
quotes_,g A (f VO.(6:0 = A) = [Ale — [[B]]@) :NfA(A— B)

= lam (

+Nf (A, A) B

26 /31

Extra slides

Quotation

The quote function is a natural transformation.
quote, : [A] = Nf-A
For the base type it is the identity.
quote, v := v
For function types:
quotes_,g A (f VO.(6:0 = A) = [Ale — [[B]]@) :NfA(A— B)
= lam (quotegy(A’A) (
1 [Blaa

27/31

Extra slides

Quotation

The quote function is a natural transformation.
quote, : [A] = Nf-A
For the base type it is the identity.
quote, v := v
For function types:
quotes_,g A (f VO.(6:0 = A) = [Ale — [[B]]@) :NfA(A— B)

= lam (quotegy(A’A) (fA7A

+AA A

28 /31

Extra slides

Quotation

The quote function is a natural transformation.
quote, : [A] = Nf-A
For the base type it is the identity.
quote, v := v
For function types:
quotes_,g A (f VO.(6:0 = A) = [Ale — [[B]]@) :NfA(A— B)
= lam (quotegy(A’A) (fA7A wk (

T [Alaa

29/31

Extra slides

Quotation

The quote function is a natural transformation.
quotey : [A] = Nf-A
For the base type it is the identity.
quote, v =V
For function types:
quotes_,g A (f VO.(B:0 = A)— [Ale — HB]]@) :NfA(A— B)

= lam (quote&(A’A) (fA,A wk (
T [AlaA

We need to unquote neutral terms: unquote, : Ne— A = [A].

30/31

Extra slides

Quotation

The quote function is a natural transformation.
quotey : [A] = Nf-A
For the base type it is the identity.
quote, v =V
For function types:
quotes_,g A (f VO.(B:0 = A)— [Ale — HB]]@) :NfA(A— B)

= lam (quoteB’(A’A) (fA7A wk (unquotes (a A) zero)))

We need to unquote neutral terms: unquote, : Ne— A = [A].

31/31

	Representing type theory in type theory
	Specifying normalisation
	NBE for simple types
	NBE for dependent types
	Extra slides

