Normalisation by Evaluation for Dependent Types

Ambrus Kaposi
Eötvös Loránd University, Budapest, Hungary
(joint work with Thorsten Altenkirch of Nottingham)

TYPES, Нови Сад
25 May 2016

Introduction

- Goal:
- Prove normalisation for a type theory with dependent types
- Using the metalanguage of type theory itself
- Structure of the talk:
- Representing type theory in type theory
- Specifying normalisation
- NBE for simple types
- NBE for dependent types

Representing type theory in type theory

Simple type theory in idealised Agda

data Ty : Set where

$$
\begin{array}{ll}
\iota & : \mathrm{Ty} \\
{ }_{-} \Rightarrow_{-} & : \mathrm{Ty} \rightarrow \mathrm{Ty} \rightarrow \mathrm{Ty}
\end{array}
$$

data Con : Set where

- : Con
, : Con \rightarrow Ty \rightarrow Con
data Var : Con \rightarrow Ty \rightarrow Set where
zero: $\operatorname{Var}(\Gamma, A) A$
suc : $\operatorname{Var} \Gamma A \rightarrow \operatorname{Var}(\Gamma, B) A$
data $\mathrm{Tm}:$ Con $\rightarrow \mathrm{Ty} \rightarrow$ Set where
var : Var Г A \rightarrow Tm Г A
$\operatorname{lam}: \operatorname{Tm}(\Gamma, A) B \rightarrow \operatorname{Tm} \Gamma(A \Rightarrow B)$
app $\quad: \operatorname{Tm} \Gamma(\mathrm{A} \Rightarrow \mathrm{B}) \rightarrow \mathrm{Tm} \Gamma \mathrm{A} \rightarrow \mathrm{Tm} \Gamma \mathrm{B}$

Simple type theory in idealised Agda

data Ty : Set where

$$
\begin{array}{ll}
\iota & : \mathrm{Ty} \\
{ }_{-} \Rightarrow_{-} & : \mathrm{Ty} \rightarrow \mathrm{Ty} \rightarrow \mathrm{Ty}
\end{array}
$$

data Con: Set where

- _, : Con No preterms!
data Var : Con \rightarrow Ty \rightarrow Set where
zero : $\operatorname{Var}(\Gamma, A) A$
suc : $\operatorname{Var} \Gamma \mathrm{A} \rightarrow \operatorname{Var}(\Gamma, B) A$
data $\mathrm{Tm}: \mathrm{Con} \rightarrow \mathrm{Ty} \rightarrow$ Set where
var : $\operatorname{Var} \Gamma \mathrm{A} \rightarrow \mathrm{Tm} \Gamma \mathrm{A}$
$\operatorname{lam}: \operatorname{Tm}(\Gamma, A) B \rightarrow \operatorname{Tm} \Gamma(A \Rightarrow B)$
app $\quad: \operatorname{Tm} \Gamma(A \Rightarrow B) \rightarrow \operatorname{Tm} \Gamma A \rightarrow \operatorname{Tm} \Gamma \mathrm{~B}$

A typed syntax of dependent types (i)

- Types depend on contexts.
\Rightarrow We need induction induction.
data Con : Set
data Ty : Con \rightarrow Set

A typed syntax of dependent types (ii)

- Types depend on contexts.
\Rightarrow We need induction induction.
- Substitutions are mentioned in the application rule:

$$
\text { app }: \operatorname{Tm} \Gamma(\sqcap A B) \rightarrow(a: \operatorname{Tm} \Gamma A) \rightarrow \operatorname{Tm} \Gamma(B[a])
$$

\Rightarrow We define an explicit substitution calculus.
data Con : Set
data Ty : Con \rightarrow Set
data Tms: Con \rightarrow Con \rightarrow Set
data Tm : Γ : Con) \rightarrow Ty $\Gamma \rightarrow$ Set

$$
\text { _[_]: Ty } \Gamma \rightarrow \operatorname{Tms} \Delta \Gamma \rightarrow \operatorname{Ty} \Delta
$$

A typed syntax of dependent types (iii)

- Types depend on contexts.
\Rightarrow We need induction induction.
- Substitutions are mentioned in the application rule:
\Rightarrow We define an explicit substitution calculus.
- The following conversion rule for terms:

$$
\frac{\Gamma \vdash A \sim B \quad \Gamma \vdash t: A}{\Gamma \vdash t: B}
$$

\Rightarrow Conversion (the relation including β, η) needs to be defined mutually with the syntax.

- We need to add 4 new members to the inductive inductive definition: \sim for contexts, types, substitutions and terms.

Representing conversion

- Lots of boilerplate:
- The \sim relations are equivalence relations
- Coercion rules
- Congruence rules
- We need to work with setoids
- The identity type \equiv_{-}is an equivalence relation with coercion and congruence laws.
- Higher inductive types are an idea from homotopy type theory: constructors for equalities.
- We add the conversion rules as constructors: e.g.
$\beta: \operatorname{app}(\operatorname{lam} t) u \equiv t[u]$.

QIITs

We formalise the syntax of type theory as a quotient inductive inductive type (QIIT).

- A QIT is a HIT which is a set
- QITs are not the same as quotient types

Using the syntax

- One defines functions from a QIIT using its eliminator.
- The arguments of the non-dependent eliminator form a model of type theory, equivalent to Categories with Families.

```
record Model: Set where
    field Con \({ }^{M}\) : Set
    \(\mathrm{Ty}^{\mathrm{M}}: \mathrm{Con}^{\mathrm{M}} \rightarrow \mathrm{Set}\)
    \(\mathrm{Tm}^{\mathrm{M}}:\left(\Gamma: \mathrm{Con}^{\mathrm{M}}\right) \rightarrow \mathrm{Ty}^{\mathrm{M}} \Gamma \rightarrow\) Set
    \(\operatorname{lam}^{\mathrm{M}}: \operatorname{Tm}^{\mathrm{M}}\left(\Gamma,{ }^{\mathrm{M}} \mathrm{A}\right) \mathrm{B}^{\mathrm{M}} \rightarrow \mathrm{Tm}^{\mathrm{M}} \Gamma\left(\Pi^{\mathrm{M}} \mathrm{A} B\right)\)
    \(\beta^{\mathrm{M}} \quad: \operatorname{app}^{\mathrm{M}}\left(\operatorname{lam}^{\mathrm{M}} \mathrm{t}\right) \mathrm{a} \equiv \mathrm{t}[\mathrm{a}]^{\mathrm{M}}\)
```

- The eliminator says that the syntax is the initial model.

Specifying normalisation

Specifying normalisation

Neutral terms and normal forms (typed!):

$\mathrm{n}::=\mathrm{x}$	nv
$\mathrm{v}::=\mathrm{n}$	$\mathrm{Ne} \Gamma \mathrm{x} . \mathrm{v}$
v	$\mathrm{Nf} \Gamma \mathrm{A}$

Normalisation is an isomorphism:

$$
\text { completeness } \cup \text { norm } \downarrow \frac{\operatorname{Tm} \Gamma A}{\operatorname{Nf} \Gamma A} \uparrow\left\ulcorner _\right\urcorner
$$

\curvearrowright stability

Soundness is given by congruence of equality:

$$
t \equiv t^{\prime} \rightarrow \operatorname{norm} t \equiv \operatorname{norm} t^{\prime}
$$

Normalisation by Evaluation (NBE)

- First formulation (Berger and Schwichtenberg, 1991)
- Simply typed case (Altenkirch, Hofmann, Streicher 1995)
- Dependent types using untyped realizers (Abel, Coquand, Dybjer, 2007)

NBE for simple types

The presheaf model

- Presheaf models are proof-relevant versions of Kripke models.
- They are parameterised over a category, here we choose REN: objects are contexts, morphisms are lists of variables.

The presheaf model

- Presheaf models are proof-relevant versions of Kripke models.
- They are parameterised over a category, here we choose REN: objects are contexts, morphisms are lists of variables.
- A context Γ is interpreted as a presheaf $\llbracket \Gamma \rrbracket:$ REN $^{\circ p} \rightarrow$ Set.
- Given another context Δ we have $\llbracket\left\ulcorner\rrbracket_{\Delta}\right.$: Set.
- Given a renaming $\Delta \xrightarrow{\beta} \Theta$, there is a $\llbracket \Gamma \rrbracket_{\Theta} \xrightarrow{\llbracket \Gamma \rrbracket \beta} \llbracket \Gamma \rrbracket_{\Delta}$.

The presheaf model

- Presheaf models are proof-relevant versions of Kripke models.
- They are parameterised over a category, here we choose REN: objects are contexts, morphisms are lists of variables.
- A context Γ is interpreted as a presheaf $\llbracket \Gamma \rrbracket:$ REN $^{\circ p} \rightarrow$ Set.
- Given another context Δ we have $\llbracket \Gamma \rrbracket_{\Delta}$: Set.
- Given a renaming $\Delta \xrightarrow{\beta} \Theta$, there is a $\llbracket \Gamma \rrbracket_{\Theta} \xrightarrow{\llbracket \Gamma \rrbracket \beta} \llbracket \Gamma \rrbracket_{\Delta}$.
- Types are presheaves too: $\llbracket A \rrbracket: \mathrm{REN}^{\mathrm{Op}} \rightarrow$ Set
$-\llbracket \iota \rrbracket_{\Delta}:=\mathrm{Nf} \Delta \iota$

The presheaf model

- Presheaf models are proof-relevant versions of Kripke models.
- They are parameterised over a category, here we choose REN: objects are contexts, morphisms are lists of variables.
- A context Γ is interpreted as a presheaf $\llbracket \Gamma \rrbracket:$ REN $^{\circ p} \rightarrow$ Set.
- Given another context Δ we have $\llbracket \Gamma \rrbracket_{\Delta}$: Set.
- Given a renaming $\Delta \xrightarrow{\beta} \Theta$, there is a $\llbracket \Gamma \rrbracket_{\Theta} \xrightarrow{\llbracket \Gamma \rrbracket \beta} \llbracket \Gamma \rrbracket_{\Delta}$.
- Types are presheaves too: $\llbracket A \rrbracket: \mathrm{REN}^{\mathrm{Op}} \rightarrow$ Set
$-\llbracket \iota \rrbracket_{\Delta}:=\mathrm{Nf} \Delta \iota$

Quotation

The quote function is a natural transformation.

$$
\text { quote }_{A}: \llbracket A \rrbracket \dot{\rightarrow} \mathrm{Nf}-A
$$

At a given context we have:

$$
\text { quote }_{A \Gamma}: \llbracket A \rrbracket \Gamma \rightarrow N f \Gamma A
$$

It is defined mutually with unquote:

$$
\text { unquote }_{A}: \mathrm{Ne}-A \rightarrow \llbracket A \rrbracket
$$

Quote and unquote

$$
\mathrm{Ne}-A \xrightarrow{\text { unquote } A}
$$

$$
\llbracket A \rrbracket \xrightarrow{\text { quote }_{A}} \mathrm{Nf}-A
$$

With completeness

R_{A} is a presheaf logical relation between the syntax and the presheaf model. It is equality at the base type.

NBE for dependent types

Defining quote, first try

Defining quote, first try

When we try to define this quote for function space, we need the equation quote ${ }_{A} \circ$ unquote $_{A} \equiv$ id.

Defining quote, first try

When we try to define this quote for function space, we need the equation quote ${ }_{A} \circ$ unquote $_{A} \equiv$ id.
Let's define quote and its completeness mutually!

Defining quote, second try

Defining quote, second try

For unquote at the function space we need to define a semantic function which works for every input, not necessarily related by the relation. But quote needs ones which are related!

Defining quote, third try

Use a proof-relevant logical predicate. At the base type it says that there exists a normal form which is equal to the term. Instance of categorical glueing.

Extra slides

The presheaf model and quote

For dependent types, types are interpreted as families of presheaves.

$$
\begin{aligned}
& \llbracket \Gamma \rrbracket: \text { REN }^{\mathrm{op}} \rightarrow \text { Set } \\
& \llbracket \Gamma \vdash A \rrbracket:(\Delta: \mathrm{REN}) \rightarrow \llbracket \Gamma \rrbracket_{\Delta} \rightarrow \text { Set }
\end{aligned}
$$

The presheaf model and quote

For dependent types, types are interpreted as families of presheaves.

$$
\begin{array}{ll}
\llbracket \Gamma \rrbracket & : \text { REN }^{\mathrm{op}} \rightarrow \text { Set } \\
\llbracket \Gamma \vdash A \rrbracket:(\Delta: \mathrm{REN}) \rightarrow \llbracket \Gamma \rrbracket_{\Delta} \rightarrow \text { Set }
\end{array}
$$

Quote for contexts is the same, but for types it is more subtle:

$$
\begin{aligned}
& \text { quote }_{\Gamma}: \llbracket\ulcorner\rrbracket \dot{\rightarrow} \operatorname{Tms}-\Gamma \\
& \text { quote }_{\Gamma \vdash A}:\left(\alpha: \llbracket\left\ulcorner\rrbracket_{\Delta}\right) \rightarrow \llbracket A \rrbracket_{\Delta} \alpha \rightarrow \operatorname{Nf} \Delta\left(A\left[\text { quote }_{\Gamma, \Delta} \alpha\right]\right)\right.
\end{aligned}
$$

Quotation

The quote function is a natural transformation.

$$
\text { quote }_{A}: \llbracket A \rrbracket \rightarrow \mathrm{Nf}-A
$$

For the base type it is the identity.
quote ${ }_{\iota} v:=v$
For function types:
quote $_{A \rightarrow B \Delta}\left(f: \forall \Theta .(\beta: \Theta \rightarrow \Delta) \rightarrow \llbracket A \rrbracket_{\Theta} \rightarrow \llbracket B \rrbracket_{\Theta}\right): \operatorname{Nf} \Delta(A \rightarrow B)$
$:=\operatorname{lam}($ $\uparrow \operatorname{Nf}(\Delta, A) B$

Quotation

The quote function is a natural transformation.

$$
\text { quote }_{A}: \llbracket A \rrbracket \rightarrow \mathrm{Nf}-A
$$

For the base type it is the identity.
quote ${ }_{\iota} v:=v$
For function types:
quote $_{A \rightarrow B \Delta}\left(f: \forall \Theta .(\beta: \Theta \rightarrow \Delta) \rightarrow \llbracket A \rrbracket_{\Theta} \rightarrow \llbracket B \rrbracket_{\Theta}\right): \operatorname{Nf} \Delta(A \rightarrow B)$
$:=\operatorname{lam}\left(\right.$ quote $_{B,(\Delta, A)}($

$$
\uparrow \llbracket B \rrbracket_{\Delta, A}
$$

Quotation

The quote function is a natural transformation.

$$
\text { quote }_{A}: \llbracket A \rrbracket \rightarrow \mathrm{Nf}-A
$$

For the base type it is the identity.
quote ${ }_{\iota} v:=v$
For function types:
quote $_{A \rightarrow B \Delta}\left(f: \forall \Theta .(\beta: \Theta \rightarrow \Delta) \rightarrow \llbracket A \rrbracket_{\Theta} \rightarrow \llbracket B \rrbracket_{\Theta}\right): \operatorname{Nf} \Delta(A \rightarrow B)$
$:=\operatorname{lam}\left(\right.$ quote $_{B,(\Delta, A)}\left(f_{\Delta, A}\right.$

$$
\uparrow \Delta, A \rightarrow \Delta
$$

Quotation

The quote function is a natural transformation.

$$
\text { quote }_{A}: \llbracket A \rrbracket \rightarrow \mathrm{Nf}-A
$$

For the base type it is the identity.
quote ${ }_{\iota} v:=v$
For function types:
quote $_{A \rightarrow B \Delta}\left(f: \forall \Theta .(\beta: \Theta \rightarrow \Delta) \rightarrow \llbracket A \rrbracket_{\Theta} \rightarrow \llbracket B \rrbracket_{\Theta}\right): \operatorname{Nf} \Delta(A \rightarrow B)$
$:=\operatorname{lam}\left(\right.$ quote $_{B,(\Delta, A)}\left(f_{\Delta, A} \quad\right.$ wk
$\uparrow \llbracket A \rrbracket_{\Delta, A}$

Quotation

The quote function is a natural transformation.

$$
\text { quote }_{A}: \llbracket A \rrbracket \rightarrow \mathrm{Nf}-A
$$

For the base type it is the identity.
quote ${ }_{\iota} v:=v$
For function types:

$$
\begin{aligned}
\text { quote }_{A \rightarrow B \Delta}\left(f: \forall \Theta \cdot(\beta: \Theta \rightarrow \Delta) \rightarrow \llbracket A \rrbracket_{\Theta}\right. & \left.\rightarrow \llbracket B \rrbracket_{\Theta}\right): \operatorname{Nf} \Delta(A \rightarrow B) \\
:=\operatorname{lam}\left(\text { quote } _ { B , (\Delta , A) } \left(f_{\Delta, A} \quad \text { wk } \quad\right.\right. & (\\
& \uparrow \llbracket A \rrbracket_{\Delta, A}
\end{aligned}
$$

We need to unquote neutral terms: unquote $_{A}: \mathrm{Ne}-A \rightarrow \llbracket A \rrbracket$.

Quotation

The quote function is a natural transformation.

$$
\text { quote }_{A}: \llbracket A \rrbracket \dot{\rightarrow} \mathrm{Nf}-A
$$

For the base type it is the identity.
quote ${ }_{\iota} v:=v$
For function types:

$$
\begin{aligned}
& \text { quote }_{A \rightarrow B \Delta}(f: \forall \Theta \cdot(\beta: \Theta \rightarrow \Delta) \rightarrow \llbracket A \rrbracket \Theta \rightarrow \llbracket B \rrbracket \Theta): \text { Nf } \Delta(A \rightarrow B) \\
& :=\operatorname{lam}\left(\text { quote }_{B,(\Delta, A)}\left(f_{\Delta, A} \quad \text { wk } \quad\left(\text { unquote }_{A(\Delta, A)} \text { zero }\right)\right)\right)
\end{aligned}
$$

We need to unquote neutral terms: unquote ${ }_{A}: \mathrm{Ne}-A \rightarrow \llbracket A \rrbracket$.

