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Identity type in type theory

? : IdN (1 + 1) 2

? : IdN (x + 0) x

0 + b := b

suc a+ b := suc (a+ b)

In general:
A : Type

IdA : A→ A→ Type
a : A

refla : IdA a a . . .
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What are the rules for Id?
▶ Per Martin-Löf: inductively by refl, eliminator J

▶ no element of IdN→N (λx .x + 0) (λx .x)

▶ Cubical type theory: IdA a b := (f : I→ A)× (f 0 = a)× (f 1 = b)

▶ Observational type theory: by computation

▶ Higher Observational type theory (WORK IN PROGRESS): by computation and

IdType AB := (A ≃ B)

Promises:

▶ explainable: no interval, only low dimensional operations

▶ computational univalence (unlike cubical type theory)

▶ simple extension of Martin-Löf’s type theory
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▶ Per Martin-Löf: inductively by refl, eliminator J

▶ no element of IdN→N (λx .x + 0) (λx .x)

▶ Cubical type theory: IdA a b := (f : I→ A)× (f 0 = a)× (f 1 = b)

▶ Observational type theory: by computation

▶ Higher Observational type theory (WORK IN PROGRESS): by computation and

IdType AB := (A ≃ B)

Promises:

▶ explainable: no interval, only low dimensional operations

▶ computational univalence (unlike cubical type theory)

▶ simple extension of Martin-Löf’s type theory
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3 / 7



What are the rules for Id?
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This paper: a baby version of H.O.T.T.

▶ Not identity, only logical relation

▶ a reflexive Id type which is a congruence, but not symmetric or transitive

▶ Voevodsky’s univalence: everything preserves equivalences

▶ Reynolds’ parametricity: everything preserves relations

▶ Not everything is computational

▶ “IdA→B
∼= IdA → IdB”

▶ IdType AB ̸∼= (A→ B → Type), only up to section-retraction

▶ Not logical relation, only logical span

▶ instead of IdA : A→ A→ Type we have A
0A←− ∀A 1A−→ A

▶ For now we see things in a glass, darkly; but then face to face. (1 Cor 13:12)

▶ explainability, computation, simple extension
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Semantics

The semantics is Bezem-Coquand-Huber cubes

▶ the first constructive model of univalence (TYPES 2013)

▶ no cubical type theory based on it: the interval I is substructural

The category of BCH cubes:

∗

∗

suc id

suc◦suc

S

R

0

1
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Syntax from semantics

The cube category □:

∗

∗

suc id

suc◦suc

S

R

0

1
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Structure on presheaves
over □:

PSh(□)

PSh(□)

∀ id

∀◦∀

S

R

0

1

Our global theory:

⊢ Γ
⊢ ∀Γ

σ : ∆⇒ Γ
∀σ : ∀∆⇒ ∀Γ

Γ ⊢ A
∀Γ ⊢ ∀A

Γ ⊢ t : A
∀Γ ⊢ ∀t : ∀A

⊢ Γ
RΓ : Γ⇒ ∀Γ
0Γ : ∀Γ⇒ Γ

1Γ : ∀Γ⇒ Γ

SΓ : ∀∀Γ⇒ ∀∀Γ
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Syntax from semantics

Structure on the standard
model internal to
PSh(PSh(□)):

Standard

Standard

∀ id

∀◦∀

S

R

0

1

Our local theory:

Γ ⊢ A
Γ ⊢ ∀A

Γ ⊢ f : A→ B
Γ ⊢ ap f : ∀A→ ∀B

Γ, x : A ⊢ B a2 : ∀A
Γ ⊢ ∀d(x .B) a2

Γ ⊢ t : Π(x : A).B

Γ ⊢ apd t : Π(a2 : ∀A).∀d(x .B) a2

Γ ⊢ A
Γ ⊢ RA : A→ ∀A
Γ ⊢ 0A : ∀A→ A

Γ ⊢ 1A : ∀A→ A

Γ ⊢ SA : ∀∀A→ ∀∀A
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Summary
▶ We defined a type theory with internal parametricity

▶ Applications:

▶ polymorphic identity function example

▶ Church encoded naturals support induction

▶ First structural type theory for BCH-cubes.

▶ Geometry is emergent, rather than built-in.

▶ We proved canonicity: every closed boolean is convertible to true or false.

▶ Ongoing and future work:

▶ Prove normalisation

▶ Replace spans by relations (Reedy fibrancy)

▶ Add Kan operations = transport rule = symmetry, transitivity of Id

▶ Implementation
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