
Internal parametricity, without an interval

Ambrus Kaposi

Eötvös Loránd University, Budapest, Hungary

j.w.w. Thorsten Altenkirch, Yorgo Chamoun and Michael Shulman

POPL
London

19 January 2024

1 / 7



Identity type in type theory

? : IdN (1 + 1) 2

? : IdN (x + 0) x

0 + b := b

suc a+ b := suc (a+ b)

In general:
A : Type

IdA : A→ A→ Type
a : A

refla : IdA a a . . .

2 / 7



Identity type in type theory

? : IdN 2 2

? : IdN (x + 0) x

0 + b := b

suc a+ b := suc (a+ b)

In general:
A : Type

IdA : A→ A→ Type
a : A

refla : IdA a a . . .

2 / 7



Identity type in type theory

refl2 : IdN (1 + 1) 2

? : IdN (x + 0) x

0 + b := b

suc a+ b := suc (a+ b)

In general:
A : Type

IdA : A→ A→ Type
a : A

refla : IdA a a . . .

2 / 7



Identity type in type theory

refl2 : IdN (1 + 1) 2

? : IdN (x + 0) x

0 + b := b

suc a+ b := suc (a+ b)

In general:
A : Type

IdA : A→ A→ Type
a : A

refla : IdA a a . . .

2 / 7



Identity type in type theory

refl2 : IdN (1 + 1) 2

? : IdN (x + 0) x

0 + b := b

suc a+ b := suc (a+ b)

In general:
A : Type

IdA : A→ A→ Type
a : A

refla : IdA a a . . .

2 / 7



Identity type in type theory

refl2 : IdN (1 + 1) 2

indN (. . . ) x : IdN (x + 0) x

0 + b := b

suc a+ b := suc (a+ b)

In general:
A : Type

IdA : A→ A→ Type
a : A

refla : IdA a a . . .

2 / 7



Identity type in type theory

refl2 : IdN (1 + 1) 2

indN (. . . ) x : IdN (x + 0) x

0 + b := b

suc a+ b := suc (a+ b)

In general:
A : Type

IdA : A→ A→ Type
a : A

refla : IdA a a . . .

2 / 7



What are the rules for Id?
▶ Per Martin-Löf: inductively by refl, eliminator J

▶ no element of IdN→N (λx .x + 0) (λx .x)

▶ Cubical type theory: IdA a b := (f : I→ A)× (f 0 = a)× (f 1 = b)

▶ Observational type theory: by computation

▶ Higher Observational type theory (WORK IN PROGRESS): by computation and

IdType AB := (A ≃ B)

Promises:

▶ explainable: no interval, only low dimensional operations

▶ computational univalence (unlike cubical type theory)

▶ simple extension of Martin-Löf’s type theory

3 / 7



What are the rules for Id?
▶ Per Martin-Löf: inductively by refl, eliminator J

▶ no element of IdN→N (λx .x + 0) (λx .x)

▶ Cubical type theory: IdA a b := (f : I→ A)× (f 0 = a)× (f 1 = b)

▶ Observational type theory: by computation

▶ Higher Observational type theory (WORK IN PROGRESS): by computation and

IdType AB := (A ≃ B)

Promises:

▶ explainable: no interval, only low dimensional operations

▶ computational univalence (unlike cubical type theory)

▶ simple extension of Martin-Löf’s type theory

3 / 7



What are the rules for Id?
▶ Per Martin-Löf: inductively by refl, eliminator J

▶ no element of IdN→N (λx .x + 0) (λx .x)

▶ Cubical type theory: IdA a b := (f : I→ A)× (f 0 = a)× (f 1 = b)

▶ Observational type theory: by computation

▶ Higher Observational type theory (WORK IN PROGRESS): by computation and

IdType AB := (A ≃ B)

Promises:

▶ explainable: no interval, only low dimensional operations

▶ computational univalence (unlike cubical type theory)

▶ simple extension of Martin-Löf’s type theory

3 / 7



What are the rules for Id?
▶ Per Martin-Löf: inductively by refl, eliminator J

▶ no element of IdN→N (λx .x + 0) (λx .x)

▶ Cubical type theory: IdA a b := (f : I→ A)× (f 0 = a)× (f 1 = b)

▶ Observational type theory: by computation

▶ Higher Observational type theory (WORK IN PROGRESS): by computation and

IdType AB := (A ≃ B)

Promises:

▶ explainable: no interval, only low dimensional operations

▶ computational univalence (unlike cubical type theory)

▶ simple extension of Martin-Löf’s type theory

3 / 7



What are the rules for Id?
▶ Per Martin-Löf: inductively by refl, eliminator J

▶ no element of IdN→N (λx .x + 0) (λx .x)

▶ Cubical type theory: IdA a b := (f : I→ A)× (f 0 = a)× (f 1 = b)

▶ Observational type theory: by computation

IdN 0 0 := ⊤
IdN (sucm) (suc n) := IdNmn

IdN 0 (suc n) := ⊥
IdN (suc n) 0 := ⊥

▶ Higher Observational type theory (WORK IN PROGRESS): by computation and

IdType AB := (A ≃ B)

Promises:

▶ explainable: no interval, only low dimensional operations

▶ computational univalence (unlike cubical type theory)

▶ simple extension of Martin-Löf’s type theory

3 / 7



What are the rules for Id?
▶ Per Martin-Löf: inductively by refl, eliminator J

▶ no element of IdN→N (λx .x + 0) (λx .x)

▶ Cubical type theory: IdA a b := (f : I→ A)× (f 0 = a)× (f 1 = b)

▶ Observational type theory: by computation

IdA×B (a0, b0) (a1, b1) := IdA a0 a1 × IdB b0 b1

▶ Higher Observational type theory (WORK IN PROGRESS): by computation and

IdType AB := (A ≃ B)

Promises:

▶ explainable: no interval, only low dimensional operations

▶ computational univalence (unlike cubical type theory)

▶ simple extension of Martin-Löf’s type theory

3 / 7



What are the rules for Id?
▶ Per Martin-Löf: inductively by refl, eliminator J

▶ no element of IdN→N (λx .x + 0) (λx .x)

▶ Cubical type theory: IdA a b := (f : I→ A)× (f 0 = a)× (f 1 = b)

▶ Observational type theory: by computation

IdA→B f0 f1 := ∀a0 a1 . IdA a0 a1 → IdB (f0 a0) (f1 a0)

▶ Higher Observational type theory (WORK IN PROGRESS): by computation and

IdType AB := (A ≃ B)

Promises:

▶ explainable: no interval, only low dimensional operations

▶ computational univalence (unlike cubical type theory)

▶ simple extension of Martin-Löf’s type theory

3 / 7



What are the rules for Id?
▶ Per Martin-Löf: inductively by refl, eliminator J

▶ no element of IdN→N (λx .x + 0) (λx .x)

▶ Cubical type theory: IdA a b := (f : I→ A)× (f 0 = a)× (f 1 = b)

▶ Observational type theory: by computation

▶ Higher Observational type theory (WORK IN PROGRESS): by computation and

IdType AB := (A ≃ B)

Promises:

▶ explainable: no interval, only low dimensional operations

▶ computational univalence (unlike cubical type theory)

▶ simple extension of Martin-Löf’s type theory

3 / 7



What are the rules for Id?
▶ Per Martin-Löf: inductively by refl, eliminator J

▶ no element of IdN→N (λx .x + 0) (λx .x)

▶ Cubical type theory: IdA a b := (f : I→ A)× (f 0 = a)× (f 1 = b)

▶ Observational type theory: by computation

▶ Higher Observational type theory (WORK IN PROGRESS): by computation and

IdType AB := (A ≃ B)

Promises:

▶ explainable: no interval, only low dimensional operations

▶ computational univalence (unlike cubical type theory)

▶ simple extension of Martin-Löf’s type theory

3 / 7



This paper: a baby version of H.O.T.T.

▶ Not identity, only logical relation

▶ a reflexive Id type which is a congruence, but not symmetric or transitive

▶ Voevodsky’s univalence: everything preserves equivalences

▶ Reynolds’ parametricity: everything preserves relations

▶ Not everything is computational

▶ “IdA→B
∼= IdA → IdB”

▶ IdType AB ̸∼= (A→ B → Type), only up to section-retraction

▶ Not logical relation, only logical span

▶ instead of IdA : A→ A→ Type we have A
0A←− ∀A 1A−→ A

▶ For now we see things in a glass, darkly; but then face to face. (1 Cor 13:12)

▶ explainability, computation, simple extension

4 / 7



This paper: a baby version of H.O.T.T.
▶ Not identity, only logical relation

▶ a reflexive Id type which is a congruence, but not symmetric or transitive

▶ Voevodsky’s univalence: everything preserves equivalences

▶ Reynolds’ parametricity: everything preserves relations

▶ Not everything is computational

▶ “IdA→B
∼= IdA → IdB”

▶ IdType AB ̸∼= (A→ B → Type), only up to section-retraction

▶ Not logical relation, only logical span

▶ instead of IdA : A→ A→ Type we have A
0A←− ∀A 1A−→ A

▶ For now we see things in a glass, darkly; but then face to face. (1 Cor 13:12)

▶ explainability, computation, simple extension

4 / 7



This paper: a baby version of H.O.T.T.
▶ Not identity, only logical relation

▶ a reflexive Id type which is a congruence, but not symmetric or transitive

▶ Voevodsky’s univalence: everything preserves equivalences

▶ Reynolds’ parametricity: everything preserves relations

▶ Not everything is computational

▶ “IdA→B
∼= IdA → IdB”

▶ IdType AB ̸∼= (A→ B → Type), only up to section-retraction

▶ Not logical relation, only logical span

▶ instead of IdA : A→ A→ Type we have A
0A←− ∀A 1A−→ A

▶ For now we see things in a glass, darkly; but then face to face. (1 Cor 13:12)

▶ explainability, computation, simple extension

4 / 7



This paper: a baby version of H.O.T.T.
▶ Not identity, only logical relation

▶ a reflexive Id type which is a congruence, but not symmetric or transitive

▶ Voevodsky’s univalence: everything preserves equivalences

▶ Reynolds’ parametricity: everything preserves relations

▶ Not everything is computational

▶ “IdA→B
∼= IdA → IdB”

▶ IdType AB ̸∼= (A→ B → Type), only up to section-retraction

▶ Not logical relation, only logical span

▶ instead of IdA : A→ A→ Type we have A
0A←− ∀A 1A−→ A

▶ For now we see things in a glass, darkly; but then face to face. (1 Cor 13:12)

▶ explainability, computation, simple extension

4 / 7



This paper: a baby version of H.O.T.T.
▶ Not identity, only logical relation

▶ a reflexive Id type which is a congruence, but not symmetric or transitive

▶ Voevodsky’s univalence: everything preserves equivalences

▶ Reynolds’ parametricity: everything preserves relations

▶ Not everything is computational

▶ “IdA→B
∼= IdA → IdB”

▶ IdType AB ̸∼= (A→ B → Type), only up to section-retraction

▶ Not logical relation, only logical span

▶ instead of IdA : A→ A→ Type we have A
0A←− ∀A 1A−→ A

▶ For now we see things in a glass, darkly; but then face to face. (1 Cor 13:12)

▶ explainability, computation, simple extension

4 / 7



This paper: a baby version of H.O.T.T.
▶ Not identity, only logical relation

▶ a reflexive Id type which is a congruence, but not symmetric or transitive

▶ Voevodsky’s univalence: everything preserves equivalences

▶ Reynolds’ parametricity: everything preserves relations

▶ Not everything is computational

▶ “IdA→B
∼= IdA → IdB”

▶ IdType AB ̸∼= (A→ B → Type), only up to section-retraction

▶ Not logical relation, only logical span

▶ instead of IdA : A→ A→ Type we have A
0A←− ∀A 1A−→ A

▶ For now we see things in a glass, darkly; but then face to face. (1 Cor 13:12)

▶ explainability, computation, simple extension

4 / 7



This paper: a baby version of H.O.T.T.
▶ Not identity, only logical relation

▶ a reflexive Id type which is a congruence, but not symmetric or transitive

▶ Voevodsky’s univalence: everything preserves equivalences

▶ Reynolds’ parametricity: everything preserves relations

▶ Not everything is computational

▶ “IdA→B
∼= IdA → IdB”

▶ IdType AB ̸∼= (A→ B → Type), only up to section-retraction

▶ Not logical relation, only logical span

▶ instead of IdA : A→ A→ Type we have A
0A←− ∀A 1A−→ A

▶ For now we see things in a glass, darkly; but then face to face. (1 Cor 13:12)

▶ explainability, computation, simple extension

4 / 7



This paper: a baby version of H.O.T.T.
▶ Not identity, only logical relation

▶ a reflexive Id type which is a congruence, but not symmetric or transitive

▶ Voevodsky’s univalence: everything preserves equivalences

▶ Reynolds’ parametricity: everything preserves relations

▶ Not everything is computational

▶ “IdA→B
∼= IdA → IdB”

▶ IdType AB ̸∼= (A→ B → Type), only up to section-retraction

▶ Not logical relation, only logical span

▶ instead of IdA : A→ A→ Type we have A
0A←− ∀A 1A−→ A

▶ For now we see things in a glass, darkly; but then face to face. (1 Cor 13:12)

▶ explainability, computation, simple extension

4 / 7



This paper: a baby version of H.O.T.T.
▶ Not identity, only logical relation

▶ a reflexive Id type which is a congruence, but not symmetric or transitive

▶ Voevodsky’s univalence: everything preserves equivalences

▶ Reynolds’ parametricity: everything preserves relations

▶ Not everything is computational

▶ “IdA→B
∼= IdA → IdB”

▶ IdType AB ̸∼= (A→ B → Type), only up to section-retraction

▶ Not logical relation, only logical span

▶ instead of IdA : A→ A→ Type we have A
0A←− ∀A 1A−→ A

▶ For now we see things in a glass, darkly; but then face to face. (1 Cor 13:12)

▶ explainability, computation, simple extension

4 / 7



This paper: a baby version of H.O.T.T.
▶ Not identity, only logical relation

▶ a reflexive Id type which is a congruence, but not symmetric or transitive

▶ Voevodsky’s univalence: everything preserves equivalences

▶ Reynolds’ parametricity: everything preserves relations

▶ Not everything is computational

▶ “IdA→B
∼= IdA → IdB”

▶ IdType AB ̸∼= (A→ B → Type), only up to section-retraction

▶ Not logical relation, only logical span

▶ instead of IdA : A→ A→ Type we have A
0A←− ∀A 1A−→ A

▶ For now we see things in a glass, darkly; but then face to face. (1 Cor 13:12)

▶ explainability, computation, simple extension

4 / 7



This paper: a baby version of H.O.T.T.
▶ Not identity, only logical relation

▶ a reflexive Id type which is a congruence, but not symmetric or transitive

▶ Voevodsky’s univalence: everything preserves equivalences

▶ Reynolds’ parametricity: everything preserves relations

▶ Not everything is computational

▶ “IdA→B
∼= IdA → IdB”

▶ IdType AB ̸∼= (A→ B → Type), only up to section-retraction

▶ Not logical relation, only logical span

▶ instead of IdA : A→ A→ Type we have A
0A←− ∀A 1A−→ A

▶ For now we see things in a glass, darkly; but then face to face. (1 Cor 13:12)

▶ explainability, computation, simple extension

4 / 7



Semantics

The semantics is Bezem-Coquand-Huber cubes

▶ the first constructive model of univalence (TYPES 2013)

▶ no cubical type theory based on it: the interval I is substructural

The category of BCH cubes:

∗

∗

suc id

suc◦suc

S

R

0

1

5 / 7



Semantics

The semantics is Bezem-Coquand-Huber cubes

▶ the first constructive model of univalence (TYPES 2013)

▶ no cubical type theory based on it: the interval I is substructural

The category of BCH cubes:

∗

∗

suc id

suc◦suc

S

R

0

1

5 / 7



Semantics

The semantics is Bezem-Coquand-Huber cubes

▶ the first constructive model of univalence (TYPES 2013)

▶ no cubical type theory based on it: the interval I is substructural

The category of BCH cubes:

0 1 2 3 . . .

∗

∗

suc id

suc◦suc

S

R

0

1

5 / 7



Semantics

The semantics is Bezem-Coquand-Huber cubes

▶ the first constructive model of univalence (TYPES 2013)

▶ no cubical type theory based on it: the interval I is substructural

The category of BCH cubes:

0 1 2 3 . . .
∗

∗

suc id

suc◦suc

S

R

0

1

5 / 7



Semantics
The semantics is Bezem-Coquand-Huber cubes

▶ the first constructive model of univalence (TYPES 2013)

▶ no cubical type theory based on it: the interval I is substructural

The category of BCH cubes:

id suc suc2 suc3 . . .R

0

1

R • idsuc

idsuc • R

0 • idsuc

1 • idsuc

idsuc • 0

idsuc • 1

S S • idsuc

idsuc • S

∗

∗

suc id

suc◦suc

S

R

0

1

5 / 7



Syntax from semantics

The cube category □:

∗

∗

suc id

suc◦suc

S

R

0

1

6 / 7



Syntax from semantics

Structure on presheaves
over □:

PSh(□)

PSh(□)

suc∗ id

suc∗◦suc∗

S

R

0

1

6 / 7



Syntax from semantics

Structure on presheaves
over □:

PSh(□)

PSh(□)

∀ id

∀◦∀

S

R

0

1

6 / 7



Syntax from semantics

Structure on presheaves
over □:

PSh(□)

PSh(□)

∀ id

∀◦∀

S

R

0

1

Our global theory:

⊢ Γ
⊢ ∀Γ

σ : ∆⇒ Γ
∀σ : ∀∆⇒ ∀Γ

Γ ⊢ A
∀Γ ⊢ ∀A

Γ ⊢ t : A
∀Γ ⊢ ∀t : ∀A

⊢ Γ
RΓ : Γ⇒ ∀Γ
0Γ : ∀Γ⇒ Γ

1Γ : ∀Γ⇒ Γ

SΓ : ∀∀Γ⇒ ∀∀Γ

6 / 7



Syntax from semantics

Structure on the standard
model internal to
PSh(PSh(□)):

Standard

Standard

∀ id

∀◦∀

S

R

0

1

Our local theory:

Γ ⊢ A
Γ ⊢ ∀A

Γ ⊢ f : A→ B
Γ ⊢ ap f : ∀A→ ∀B

Γ, x : A ⊢ B a2 : ∀A
Γ ⊢ ∀d(x .B) a2

Γ ⊢ t : Π(x : A).B

Γ ⊢ apd t : Π(a2 : ∀A).∀d(x .B) a2

Γ ⊢ A
Γ ⊢ RA : A→ ∀A
Γ ⊢ 0A : ∀A→ A

Γ ⊢ 1A : ∀A→ A

Γ ⊢ SA : ∀∀A→ ∀∀A

6 / 7



Summary
▶ We defined a type theory with internal parametricity

▶ Applications:

▶ polymorphic identity function example

▶ Church encoded naturals support induction

▶ First structural type theory for BCH-cubes.

▶ Geometry is emergent, rather than built-in.

▶ We proved canonicity: every closed boolean is convertible to true or false.

▶ Ongoing and future work:

▶ Prove normalisation

▶ Replace spans by relations (Reedy fibrancy)

▶ Add Kan operations = transport rule = symmetry, transitivity of Id

▶ Implementation

7 / 7



Summary
▶ We defined a type theory with internal parametricity

▶ Applications:

▶ polymorphic identity function example

▶ Church encoded naturals support induction

▶ First structural type theory for BCH-cubes.

▶ Geometry is emergent, rather than built-in.

▶ We proved canonicity: every closed boolean is convertible to true or false.

▶ Ongoing and future work:

▶ Prove normalisation

▶ Replace spans by relations (Reedy fibrancy)

▶ Add Kan operations = transport rule = symmetry, transitivity of Id

▶ Implementation

7 / 7



Summary
▶ We defined a type theory with internal parametricity

▶ Applications:

▶ polymorphic identity function example

▶ Church encoded naturals support induction

▶ First structural type theory for BCH-cubes.

▶ Geometry is emergent, rather than built-in.

▶ We proved canonicity: every closed boolean is convertible to true or false.

▶ Ongoing and future work:

▶ Prove normalisation

▶ Replace spans by relations (Reedy fibrancy)

▶ Add Kan operations = transport rule = symmetry, transitivity of Id

▶ Implementation

7 / 7



Summary
▶ We defined a type theory with internal parametricity

▶ Applications:

▶ polymorphic identity function example

▶ Church encoded naturals support induction

▶ First structural type theory for BCH-cubes.

▶ Geometry is emergent, rather than built-in.

▶ We proved canonicity: every closed boolean is convertible to true or false.

▶ Ongoing and future work:

▶ Prove normalisation

▶ Replace spans by relations (Reedy fibrancy)

▶ Add Kan operations = transport rule = symmetry, transitivity of Id

▶ Implementation

7 / 7



Summary
▶ We defined a type theory with internal parametricity

▶ Applications:

▶ polymorphic identity function example

▶ Church encoded naturals support induction

▶ First structural type theory for BCH-cubes.

▶ Geometry is emergent, rather than built-in.

▶ We proved canonicity: every closed boolean is convertible to true or false.

▶ Ongoing and future work:

▶ Prove normalisation

▶ Replace spans by relations (Reedy fibrancy)

▶ Add Kan operations = transport rule = symmetry, transitivity of Id

▶ Implementation

7 / 7



Summary
▶ We defined a type theory with internal parametricity

▶ Applications:

▶ polymorphic identity function example

▶ Church encoded naturals support induction

▶ First structural type theory for BCH-cubes.

▶ Geometry is emergent, rather than built-in.

▶ We proved canonicity: every closed boolean is convertible to true or false.

▶ Ongoing and future work:

▶ Prove normalisation

▶ Replace spans by relations (Reedy fibrancy)

▶ Add Kan operations = transport rule = symmetry, transitivity of Id

▶ Implementation

7 / 7


