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In general:

A Type a:A
Ida: A— A— Type refl, : ldaaa
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» Per Martin-Lof: inductively by refl, eliminator J
> no element of ldy_,n (Ax.x + 0) (Ax.x)
» Cubical type theory: Idpab:=(f:1— A) x (f0=2a) x (f1=0b)
» Observational type theory: by computation
» Higher Observational type theory (WORK IN PROGRESS): by computation and
ldType AB := (A~ B)
Promises:

» explainable: no interval, only low dimensional operations
» computational univalence (unlike cubical type theory)
» simple extension of Martin-Lof's type theory
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» Voevodsky's univalence: everything preserves equivalences

» Reynolds’ parametricity: everything preserves relations
» Not everything is computational

> “ldag =ZIldsy — Idg"
» ldrype AB 2 (A — B — Type), only up to section-retraction

» Not logical relation, only logical span
» instead of Idsa: A— A — Type we have A yA 4 A
» For now we see things in a glass, darkly; but then face to face. (1 cor 13:12)

» explainability, computation, simple extension
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The semantics is Bezem-Coquand-Huber cubes

» the first constructive model of univalence (TYPES 2013)

» no cubical type theory based on it: the interval T is substructural
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Syntax from semantics

The cube category [I:
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Syntax from semantics

Structure on presheaves

over [I:
PSh(DJ)
R
¥
v id DS
:1>
0
PSh(D) vev

Our global theory:

- T g AST
F VT Vo VA = VT
r-A Mt:A
VI - VA VI -Vt VA
- T
Rr:T = v
Or: VI =T
Ir:Vr =T

Sr:WI = Wl
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Syntax from semantics
Our local theory:

Structure on the standard

model internal to M= A r’EFf:A— B
PSh(PSh(0J)): [ VA [Fapf:VA— VB
Standard [x:AFB a:VA [Ft:N(x:A).B
R I Yd(x.B) a2 l+apdt:M(ax: VA).M(x.B) az
v id DS
1 r=A
FF0a:VA— A
Standard vov A
=15 :VA— A

[FSa: WA = WA
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Summary

>

We defined a type theory with internal parametricity
Applications:

» polymorphic identity function example
» Church encoded naturals support induction

First structural type theory for BCH-cubes.

Geometry is emergent, rather than built-in.

We proved canonicity: every closed boolean is convertible to true or false.

Ongoing and future work:

» Prove normalisation
> Replace spans by relations (Reedy fibrancy)
» Add Kan operations = transport rule = symmetry, transitivity of Id

» Implementation
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