Internal parametricity, without an interval
Ambrus Kaposi
Eotvos Lorand University, Budapest, Hungary

j-w.w. Thorsten Altenkirch, Yorgo Chamoun and Michael Shulman

POPL
London
19 January 2024

1/7

|dentity type in type theory

7 ldy (1+1)2

2/7

|dentity type in type theory

?ZldN

2

2

2/7

|dentity type in type theory

refly @ ldy (1 +1)2

2/7

|dentity type in type theory

refly @ ldy (1 +1)2

7 ldy (x 4+ 0) x

2/7

|dentity type in type theory

refly @ ldy (1 +1)2

7 ldy (x 4+ 0) x

0 +b:=>b
suca+ b:=suc(a+ b)

2/7

|dentity type in type theory

refly @ ldy (1 +1)2

indy (...) x : ldy (x + 0) x

0 +b:=>b
suca+ b:=suc(a+ b)

2/7

|dentity type in type theory

refly @ ldy (1 +1)2

indy (...) x : ldy (x + 0) x

0 +b:=0b
suca+ b:=suc(a+ b)
In general:

A Type a:A
Ida: A— A— Type refl, : ldaaa

2/7

What are the rules for 1d?
» Per Martin-Lof: inductively by refl, eliminator J

3/7

What are the rules for 1d?
» Per Martin-Lof: inductively by refl, eliminator J

> no element of ldy_,n (Ax.x + 0) (Ax.x)

3/7

What are the rules for Id?
» Per Martin-Lof: inductively by refl, eliminator J
> no element of ldy_,n (Ax.x + 0) (Ax.x)

» Cubical type theory: Idpab:=(f:1— A) x (f0

a)x (f1

3/7

What are the rules for Id?
» Per Martin-Lof: inductively by refl, eliminator J
> no element of ldy_,n (Ax.x + 0) (Ax.x)
» Cubical type theory: Idgab:=(f:1— A) x (f0

» Observational type theory: by computation

3/7

What are the rules for Id?
» Per Martin-Lof: inductively by refl, eliminator J
> no element of ldy_,n (Ax.x + 0) (Ax.x)
» Cubical type theory: ldgab:=(f:I— A) x (f0=a) x (f1

» Observational type theory: by computation

ldy O 0 =T
ldy (suc m) (sucn) ;= ldymn
ldy 0 (sucn) =L

Idy (sucn) 0 =1

3/7

What are the rules for 1d?
» Per Martin-Lof: inductively by refl, eliminator J
> no element of Idy_x (Ax.x + 0) (Ax.x)
» Cubical type theory: Idpab:=(f:1— A) x (f0=2a) x (f1=0b)
» Observational type theory: by computation
ldax s (a0, bo) (a1, b1) :=lda ap a1 x Idg by by

3/7

What are the rules for Id?
» Per Martin-Lof: inductively by refl, eliminator J
> no element of ldy_,n (Ax.x + 0) (Ax.x)
» Cubical type theory: Idpab:=(f:1— A) x (f0=2a) x (f1=0b)
» Observational type theory: by computation
lda—pg fofi :=Vagay.ldaagar — ldg (fp a0) (f1 a0)

3/7

What are the rules for Id?
» Per Martin-Lof: inductively by refl, eliminator J
> no element of ldy_,n (Ax.x + 0) (Ax.x)
» Cubical type theory: Idpab:=(f:1— A) x (f0=2a) x (f1=0b)
» Observational type theory: by computation

» Higher Observational type theory (WORK IN PROGRESS): by computation and
ldType AB := (A~ B)

3/7

What are the rules for 1d?
» Per Martin-Lof: inductively by refl, eliminator J
> no element of ldy_,n (Ax.x + 0) (Ax.x)
» Cubical type theory: Idpab:=(f:1— A) x (f0=2a) x (f1=0b)
» Observational type theory: by computation
» Higher Observational type theory (WORK IN PROGRESS): by computation and
ldType AB := (A~ B)
Promises:

» explainable: no interval, only low dimensional operations
» computational univalence (unlike cubical type theory)
» simple extension of Martin-Lof's type theory

3/7

This paper: a baby version of H.O.T.T.

This paper: a baby version of H.O.T.T.

» Not identity, only logical relation

4/7

This paper: a baby version of H.O.T.T.

» Not identity, only logical relation

P a reflexive Id type which is a congruence, but not symmetric or transitive

4/7

This paper: a baby version of H.O.T.T.

» Not identity, only logical relation

P a reflexive Id type which is a congruence, but not symmetric or transitive
» Voevodsky's univalence: everything preserves equivalences

» Reynolds’ parametricity: everything preserves relations

4/7

This paper: a baby version of H.O.T.T.

» Not identity, only logical relation

P a reflexive Id type which is a congruence, but not symmetric or transitive
» Voevodsky's univalence: everything preserves equivalences

» Reynolds’ parametricity: everything preserves relations

» Not everything is computational

4/7

This paper: a baby version of H.O.T.T.

» Not identity, only logical relation

P a reflexive Id type which is a congruence, but not symmetric or transitive
» Voevodsky's univalence: everything preserves equivalences

» Reynolds’ parametricity: everything preserves relations
» Not everything is computational

> “ldag =ZIldsy — Idg"

4/7

This paper: a baby version of H.O.T.T.

» Not identity, only logical relation

P a reflexive Id type which is a congruence, but not symmetric or transitive
» Voevodsky's univalence: everything preserves equivalences

» Reynolds’ parametricity: everything preserves relations
» Not everything is computational

> “ldag =ZIldsy — Idg"

» ldrype AB 2 (A — B — Type), only up to section-retraction

4/7

This paper: a baby version of H.O.T.T.

» Not identity, only logical relation

P a reflexive Id type which is a congruence, but not symmetric or transitive
» Voevodsky's univalence: everything preserves equivalences

» Reynolds’ parametricity: everything preserves relations
» Not everything is computational

> “ldag =ZIldsy — Idg"

» ldrype AB 2 (A — B — Type), only up to section-retraction

» Not logical relation, only logical span

4/7

This paper: a baby version of H.O.T.T.

» Not identity, only logical relation

P a reflexive Id type which is a congruence, but not symmetric or transitive
» Voevodsky's univalence: everything preserves equivalences

» Reynolds’ parametricity: everything preserves relations
» Not everything is computational

> “ldag =ZIldsy — Idg"
» ldrype AB 2 (A — B — Type), only up to section-retraction

» Not logical relation, only logical span

» instead of Ida: A— A — Type we have A+ VA" A

4/7

This paper: a baby version of H.O.T.T.

» Not identity, only logical relation

P a reflexive Id type which is a congruence, but not symmetric or transitive
» Voevodsky's univalence: everything preserves equivalences

» Reynolds’ parametricity: everything preserves relations
» Not everything is computational

> “ldag =ZIldsy — Idg"
» ldrype AB 2 (A — B — Type), only up to section-retraction

» Not logical relation, only logical span
» instead of Idsa: A— A — Type we have A yA 4 A

» For now we see things in a glass, darkly; but then face to face. (1 cor 13:12)

4/7

This paper: a baby version of H.O.T.T.

» Not identity, only logical relation

P a reflexive Id type which is a congruence, but not symmetric or transitive
» Voevodsky's univalence: everything preserves equivalences

» Reynolds’ parametricity: everything preserves relations
» Not everything is computational

> “ldag =ZIldsy — Idg"
» ldrype AB 2 (A — B — Type), only up to section-retraction

» Not logical relation, only logical span
» instead of Idsa: A— A — Type we have A yA 4 A
» For now we see things in a glass, darkly; but then face to face. (1 cor 13:12)

» explainability, computation, simple extension

4/7

Semantics

The semantics is Bezem-Coquand-Huber cubes

5/7

Semantics

The semantics is Bezem-Coquand-Huber cubes
» the first constructive model of univalence (TYPES 2013)

P no cubical type theory based on it: the interval I is substructural

5/7

Semantics
The semantics is Bezem-Coquand-Huber cubes
» the first constructive model of univalence (TYPES 2013)
» no cubical type theory based on it: the interval I is substructural

The category of BCH cubes:

0\
IS —— 1.

NN

5/7

Semantics
The semantics is Bezem-Coquand-Huber cubes
» the first constructive model of univalence (TYPES 2013)
» no cubical type theory based on it: the interval I is substructural

The category of BCH cubes:

=EE - [

sucosuc

|_l

O

5/7

Semantics

The semantics is Bezem-Coquand-Huber cubes

» the first constructive model of univalence (TYPES 2013)

» no cubical type theory based on it: the interval T is substructural

The category of BCH cubes:

idsuc @ 0
) o idoe s S @ idsc
T |dsuc *R T

. R
id &—————suc (\R"_dy suc? <— suc3

0 W
idsuc @ 1 idsuc ® S

suc

*

Ds

sucosuc

5/7

Syntax from semantics

The cube category [I:

suc id DS
1
]

sucosuc

6/7

Syntax from semantics

Structure on presheaves
over [

PSh(D)

PSh(D) suc*osuc*

6/7

Syntax from semantics

Structure on presheaves
over [I:

PSh(D)

PSh(OJ) oY

6/7

Syntax from semantics

Structure on presheaves

over [I:
PSh(DJ)
R
¥
v id DS
:1>
0
PSh(D) vev

Our global theory:

- T g AST
F VT Vo VA = VT
r-A Mt:A
VI - VA VI -Vt VA
- T
Rr:T = v
Or: VI =T
Ir:Vr =T

Sr:WI = Wl

6/7

Syntax from semantics
Our local theory:

Structure on the standard

model internal to M= A r’EFf:A— B
PSh(PSh(0J)): [VA [Fapf:VA— VB
Standard [x:AFB a:VA [Ft:N(x:A).B
R I Yd(x.B) a2 l+apdt:M(ax: VA).M(x.B) az
v id DS
1 r=A
FF0a:VA— A
Standard vov A
=15 :VA— A

[FSa: WA = WA

6/7

Summary

> We defined a type theory with internal parametricity

7/7

Summary

> We defined a type theory with internal parametricity
» Applications:

» polymorphic identity function example
» Church encoded naturals support induction

7/7

Summary

> We defined a type theory with internal parametricity
» Applications:

» polymorphic identity function example
» Church encoded naturals support induction

» First structural type theory for BCH-cubes.

7/7

Summary
> We defined a type theory with internal parametricity
» Applications:

» polymorphic identity function example
» Church encoded naturals support induction

» First structural type theory for BCH-cubes.

» Geometry is emergent, rather than built-in.

7/7

Summary
> We defined a type theory with internal parametricity
» Applications:

» polymorphic identity function example
» Church encoded naturals support induction

» First structural type theory for BCH-cubes.
» Geometry is emergent, rather than built-in.

» We proved canonicity: every closed boolean is convertible to true or false.

7/7

Summary

>

We defined a type theory with internal parametricity
Applications:

» polymorphic identity function example
» Church encoded naturals support induction

First structural type theory for BCH-cubes.

Geometry is emergent, rather than built-in.

We proved canonicity: every closed boolean is convertible to true or false.

Ongoing and future work:

» Prove normalisation
> Replace spans by relations (Reedy fibrancy)
» Add Kan operations = transport rule = symmetry, transitivity of Id

» Implementation

7/7

