Internal parametricity, without an interval

Ambrus Kaposi
Eötvös Loránd University, Budapest, Hungary
j.w.w. Thorsten Altenkirch, Yorgo Chamoun and Michael Shulman
POPL
London
19 January 2024

Identity type in type theory

$?: \operatorname{ld}_{\mathbb{N}}(1+1) 2$

Identity type in type theory

$?: \operatorname{ld}_{\mathbb{N}} \quad 2 \quad 2$

Identity type in type theory

$$
\operatorname{refl}_{2}: \operatorname{ld}_{\mathbb{N}}(1+1) 2
$$

Identity type in type theory

$\operatorname{refl}_{2}: \operatorname{Id}_{\mathbb{N}}(1+1) 2$
$?: \operatorname{ld}_{\mathbb{N}}(x+0) x$

Identity type in type theory

$$
\begin{aligned}
\operatorname{refl}_{2} & : \operatorname{ld}_{\mathbb{N}}(1+1) 2 \\
? & : \operatorname{ld}_{\mathbb{N}}(x+0) x \\
0 \quad+b & :=b \\
\operatorname{suc} a+b & :=\operatorname{suc}(a+b)
\end{aligned}
$$

Identity type in type theory

$$
\begin{aligned}
\operatorname{refl}_{2}: & \operatorname{ld}_{\mathbb{N}}(1+1) 2 \\
\operatorname{ind}_{\mathbb{N}}(\ldots) x: & \operatorname{ld}_{\mathbb{N}}(x+0) x \\
0 \quad+b & :=b \\
\operatorname{suc} a+b & :=\operatorname{suc}(a+b)
\end{aligned}
$$

Identity type in type theory

$$
\begin{aligned}
\operatorname{refl}_{2}: & \operatorname{ld}_{\mathbb{N}}(1+1) 2 \\
\operatorname{ind}_{\mathbb{N}}(\ldots) x: & \operatorname{ld}_{\mathbb{N}}(x+0) x \\
0 \quad+b & :=b \\
\operatorname{suc} a+b & :=\operatorname{suc}(a+b)
\end{aligned}
$$

In general:

$$
\frac{A: \text { Type }}{\operatorname{ld}_{A}: A \rightarrow A \rightarrow \text { Type }} \quad \frac{a: A}{\operatorname{refl}_{a}: \operatorname{ld}_{A} a a}
$$

What are the rules for Id?

- Per Martin-Löf: inductively by refl, eliminator J

What are the rules for Id?

- Per Martin-Löf: inductively by refl, eliminator J
- no element of $\operatorname{ld}_{\mathbb{N} \rightarrow \mathbb{N}}(\lambda x \cdot x+0)(\lambda x \cdot x)$

What are the rules for Id?

- Per Martin-Löf: inductively by refl, eliminator J
- no element of $\operatorname{ld}_{\mathbb{N} \rightarrow \mathbb{N}}(\lambda x \cdot x+0)(\lambda x \cdot x)$
- Cubical type theory: $\operatorname{ld}_{A} a b:=(f: \mathbb{I} \rightarrow A) \times(f 0=a) \times(f 1=b)$

What are the rules for Id?

- Per Martin-Löf: inductively by refl, eliminator J
- no element of $\operatorname{ld}_{\mathbb{N} \rightarrow \mathbb{N}}(\lambda x \cdot x+0)(\lambda x \cdot x)$
- Cubical type theory: $\operatorname{ld}_{A} a b:=(f: \mathbb{I} \rightarrow A) \times(f 0=a) \times(f 1=b)$
- Observational type theory: by computation

What are the rules for Id?

- Per Martin-Löf: inductively by refl, eliminator J
- no element of $\operatorname{ld}_{\mathbb{N} \rightarrow \mathbb{N}}(\lambda x \cdot x+0)(\lambda x \cdot x)$
- Cubical type theory: $\operatorname{ld}_{A} a b:=(f: \mathbb{I} \rightarrow A) \times(f 0=a) \times(f 1=b)$
- Observational type theory: by computation

$$
\begin{array}{lll}
\operatorname{ld}_{\mathbb{N}} 0 & 0 & :=\top \\
\operatorname{Id}_{\mathbb{N}}(\operatorname{suc} m)(\operatorname{suc} n) & :=\mathrm{Id}_{\mathbb{N}} m n \\
\operatorname{ld}_{\mathbb{N}} 0 & (\operatorname{suc} n) & :=\perp \\
\operatorname{ld}_{\mathbb{N}}(\operatorname{suc} n) & 0 & :=\perp
\end{array}
$$

What are the rules for Id?

- Per Martin-Löf: inductively by refl, eliminator J
- no element of $\operatorname{ld}_{\mathbb{N} \rightarrow \mathbb{N}}(\lambda x \cdot x+0)(\lambda x \cdot x)$
- Cubical type theory: $\operatorname{ld}_{A} a b:=(f: \mathbb{I} \rightarrow A) \times(f 0=a) \times(f 1=b)$
- Observational type theory: by computation

$$
\operatorname{Id}_{A \times B}\left(a_{0}, b_{0}\right)\left(a_{1}, b_{1}\right):=\operatorname{Id}_{A} a_{0} a_{1} \times \operatorname{Id}_{B} b_{0} b_{1}
$$

What are the rules for Id?

- Per Martin-Löf: inductively by refl, eliminator J
- no element of $\operatorname{ld}_{\mathbb{N} \rightarrow \mathbb{N}}(\lambda x \cdot x+0)(\lambda x \cdot x)$
- Cubical type theory: $\operatorname{ld}_{A} a b:=(f: \mathbb{I} \rightarrow A) \times(f 0=a) \times(f 1=b)$
- Observational type theory: by computation

$$
\operatorname{ld}_{A \rightarrow B} f_{0} f_{1}:=\forall a_{0} a_{1} \cdot \operatorname{ld}_{A} a_{0} a_{1} \rightarrow \operatorname{Id}_{B}\left(f_{0} a_{0}\right)\left(f_{1} a_{0}\right)
$$

What are the rules for Id?

- Per Martin-Löf: inductively by refl, eliminator J
- no element of $\operatorname{ld}_{\mathbb{N} \rightarrow \mathbb{N}}(\lambda x \cdot x+0)(\lambda x \cdot x)$
- Cubical type theory: $\operatorname{ld}_{A} a b:=(f: \mathbb{I} \rightarrow A) \times(f 0=a) \times(f 1=b)$
- Observational type theory: by computation
- Higher Observational type theory (WORK IN PROGRESS): by computation and

$$
\mathrm{Id}_{\mathrm{Type}} A B:=(A \simeq B)
$$

What are the rules for Id?

- Per Martin-Löf: inductively by refl, eliminator J
- no element of $\operatorname{ld}_{\mathbb{N} \rightarrow \mathbb{N}}(\lambda x \cdot x+0)(\lambda x \cdot x)$
- Cubical type theory: $\operatorname{ld}_{A} a b:=(f: \mathbb{I} \rightarrow A) \times(f 0=a) \times(f 1=b)$
- Observational type theory: by computation
- Higher Observational type theory (WORK IN PROGRESS): by computation and

$$
\operatorname{ld}_{\mathrm{Type}} A B:=(A \simeq B)
$$

Promises:

- explainable: no interval, only low dimensional operations
- computational univalence (unlike cubical type theory)
- simple extension of Martin-Löf's type theory

This paper: a baby version of H.O.T.T.

This paper: a baby version of H.O.T.T.

- Not identity, only logical relation

This paper: a baby version of H.O.T.T.

- Not identity, only logical relation
- a reflexive Id type which is a congruence, but not symmetric or transitive

This paper: a baby version of H.O.T.T.

- Not identity, only logical relation
- a reflexive Id type which is a congruence, but not symmetric or transitive
- Voevodsky's univalence: everything preserves equivalences
- Reynolds' parametricity: everything preserves relations

This paper: a baby version of H.O.T.T.

- Not identity, only logical relation
- a reflexive Id type which is a congruence, but not symmetric or transitive
- Voevodsky's univalence: everything preserves equivalences
- Reynolds' parametricity: everything preserves relations
- Not everything is computational

This paper: a baby version of H.O.T.T.

- Not identity, only logical relation
- a reflexive Id type which is a congruence, but not symmetric or transitive
- Voevodsky's univalence: everything preserves equivalences
- Reynolds' parametricity: everything preserves relations
- Not everything is computational
$-{ }^{\prime \prime} \mathrm{Id}_{A \rightarrow B} \cong \mathrm{Id}_{A} \rightarrow \mathrm{Id}_{B}$ "

This paper: a baby version of H.O.T.T.

- Not identity, only logical relation
- a reflexive Id type which is a congruence, but not symmetric or transitive
- Voevodsky's univalence: everything preserves equivalences
- Reynolds' parametricity: everything preserves relations
- Not everything is computational
$-{ }^{\prime \prime} \mathrm{Id}_{A \rightarrow B} \cong \mathrm{Id}_{A} \rightarrow \mathrm{Id}_{B}$ "
- $\operatorname{Id}_{\text {Type }} A B \neq(A \rightarrow B \rightarrow$ Type), only up to section-retraction

This paper: a baby version of H.O.T.T.

- Not identity, only logical relation
- a reflexive Id type which is a congruence, but not symmetric or transitive
- Voevodsky's univalence: everything preserves equivalences
- Reynolds' parametricity: everything preserves relations
- Not everything is computational
$-{ }^{\prime \prime} \mathrm{Id}_{A \rightarrow B} \cong \mathrm{Id}_{A} \rightarrow \mathrm{Id}_{B}$ "
- $\operatorname{ld}_{\text {Type }} A B \neq(A \rightarrow B \rightarrow$ Type), only up to section-retraction
- Not logical relation, only logical span

This paper: a baby version of H.O.T.T.

- Not identity, only logical relation
- a reflexive Id type which is a congruence, but not symmetric or transitive
- Voevodsky's univalence: everything preserves equivalences
- Reynolds' parametricity: everything preserves relations
- Not everything is computational
- " $\mathrm{Id}_{A \rightarrow B} \cong \mathrm{Id}_{A} \rightarrow \mathrm{Id}_{B}$ "
- $\operatorname{ld}_{\text {Type }} A B \not \approx(A \rightarrow B \rightarrow$ Type), only up to section-retraction
- Not logical relation, only logical span
- instead of

$$
\mathrm{Id}_{A}: A \rightarrow A \rightarrow \text { Type }
$$

we have
$A \stackrel{0_{A}}{\leftarrow} \forall A \xrightarrow{1_{A}} A$

This paper: a baby version of H.O.T.T.

- Not identity, only logical relation
- a reflexive Id type which is a congruence, but not symmetric or transitive
- Voevodsky's univalence: everything preserves equivalences
- Reynolds' parametricity: everything preserves relations
- Not everything is computational
$-{ }^{-1 \mathrm{Id}_{A \rightarrow B} \cong \mathrm{Id}_{A} \rightarrow \mathrm{Id}_{B} "}$
- $\mathrm{Id}_{\text {Type }} A B \not \approx(A \rightarrow B \rightarrow$ Type $)$, only up to section-retraction
- Not logical relation, only logical span
- instead of
$\mathrm{Id}_{A}: A \rightarrow A \rightarrow$ Type
we have
$A \stackrel{0_{A}}{\rightleftarrows} \forall A \xrightarrow{1_{A}} A$
- For now we see things in a glass, darkly; but then face to face. (1 cor 13:12)

This paper: a baby version of H.O.T.T.

- Not identity, only logical relation
- a reflexive Id type which is a congruence, but not symmetric or transitive
- Voevodsky's univalence: everything preserves equivalences
- Reynolds' parametricity: everything preserves relations
- Not everything is computational
$-{ }^{\prime} \mathrm{Id}_{A \rightarrow B} \cong \mathrm{Id}_{A} \rightarrow \mathrm{Id}_{B}$ "
- $\mathrm{Id}_{\text {Type }} A B \neq(A \rightarrow B \rightarrow$ Type), only up to section-retraction
- Not logical relation, only logical span
- instead of

$$
\mathrm{Id}_{A}: A \rightarrow A \rightarrow \text { Type }
$$

we have
$A \stackrel{0_{A}}{\rightleftarrows} \forall A \xrightarrow{1_{A}} A$

- For now we see things in a glass, darkly; but then face to face. (1 cor 13:12)
- explainability, computation, simple extension

Semantics

The semantics is Bezem-Coquand-Huber cubes

Semantics

The semantics is Bezem-Coquand-Huber cubes

- the first constructive model of univalence (TYPES 2013)
- no cubical type theory based on it: the interval \mathbb{I} is substructural

Semantics

The semantics is Bezem-Coquand-Huber cubes

- the first constructive model of univalence (TYPES 2013)
- no cubical type theory based on it: the interval \mathbb{I} is substructural

The category of BCH cubes:

Semantics

The semantics is Bezem-Coquand-Huber cubes

- the first constructive model of univalence (TYPES 2013)
- no cubical type theory based on it: the interval \mathbb{I} is substructural

The category of BCH cubes:

Semantics

The semantics is Bezem-Coquand-Huber cubes

- the first constructive model of univalence (TYPES 2013)
- no cubical type theory based on it: the interval \mathbb{I} is substructural

The category of BCH cubes:

Syntax from semantics

The cube category \square :

Syntax from semantics

Structure on presheaves over \square :

Syntax from semantics

Structure on presheaves over \square :

Syntax from semantics

Our global theory:
Structure on presheaves over \square :

$$
\frac{\vdash \Gamma}{\vdash \forall \Gamma} \quad \frac{\sigma: \Delta \Rightarrow \Gamma}{\forall \sigma: \forall \Delta \Rightarrow \forall \Gamma}
$$

$$
\begin{gathered}
\frac{\Gamma \vdash A}{\forall \Gamma \vdash \forall A} \quad \frac{\Gamma \vdash t: A}{\forall \Gamma \vdash \forall t: \forall A} \\
\frac{\vdash \Gamma}{\mathrm{R}_{\Gamma}: \Gamma \Rightarrow \forall \Gamma} \\
0 \Gamma: \forall \Gamma \Rightarrow \Gamma \\
1_{\Gamma}: \forall \Gamma \Rightarrow \Gamma \\
\mathrm{S}_{\Gamma}: \forall \forall \Gamma \Rightarrow \forall \forall \Gamma
\end{gathered}
$$

Syntax from semantics

Our local theory:
Structure on the standard $\begin{array}{lll}\text { model internal to } & \frac{\Gamma \vdash A}{\Gamma \vdash \forall A} & \frac{\Gamma \vdash f: A \rightarrow B}{\Gamma \vdash \operatorname{ap} f: \forall A \rightarrow \forall B} \\ \operatorname{PSh}(\operatorname{PSh}(\square)): & \square\end{array}$

Summary

- We defined a type theory with internal parametricity

Summary

- We defined a type theory with internal parametricity
- Applications:
- polymorphic identity function example
- Church encoded naturals support induction

Summary

- We defined a type theory with internal parametricity
- Applications:
- polymorphic identity function example
- Church encoded naturals support induction
- First structural type theory for BCH-cubes.

Summary

- We defined a type theory with internal parametricity
- Applications:
- polymorphic identity function example
- Church encoded naturals support induction
- First structural type theory for BCH-cubes.
- Geometry is emergent, rather than built-in.

Summary

- We defined a type theory with internal parametricity
- Applications:
- polymorphic identity function example
- Church encoded naturals support induction
- First structural type theory for BCH-cubes.
- Geometry is emergent, rather than built-in.
- We proved canonicity: every closed boolean is convertible to true or false.

Summary

- We defined a type theory with internal parametricity
- Applications:
- polymorphic identity function example
- Church encoded naturals support induction
- First structural type theory for BCH-cubes.
- Geometry is emergent, rather than built-in.
- We proved canonicity: every closed boolean is convertible to true or false.
- Ongoing and future work:
- Prove normalisation
- Replace spans by relations (Reedy fibrancy)
- Add Kan operations = transport rule $=$ symmetry, transitivity of Id
- Implementation

