
Normalisation by Evaluation for Dependent Types

Ambrus Kaposi
Eötvös Loránd University, Budapest, Hungary

(j.w.w. Thorsten Altenkirch, University of Nottingham)

FSCD, Porto
24 June 2016

Introduction

I Goal:

I Prove normalisation for a type theory with dependent types

I Using the metalanguage of type theory itself

I Structure of the talk:

I Representing type theory in type theory

I Specifying normalisation

I NBE for simple types

I NBE for dependent types

2 / 26

Representing type theory in type theory

Representing type theory in type theory

3 / 26

Representing type theory in type theory

Simple type theory the traditional way
Set of variables, alphabet including ⇒, λ etc.
Well-formed expressions:

A ::= ι |A⇒ A′

Γ ::= · | Γ, x : A

t ::= x |λx .t | t t ′

An inductively defined relation:

(x : A) ∈ Γ

Γ ` x : A
Γ ` t : A

Γ.x : B ` t : A

Γ, x : A ` t : B
Γ ` λx .t : A→ B

Γ ` t : A→ B Γ ` u : A
Γ ` t u : B

4 / 26

Representing type theory in type theory

Simple type theory in idealised Agda
data Ty : Set where
ι : Ty
⇒ : Ty → Ty → Ty

data Con : Set where
• : Con
, : Con → Ty → Con

data Var : Con → Ty → Set where
zero : Var (Γ , A) A
suc : Var Γ A → Var (Γ , B) A

data Tm : Con → Ty → Set where
var : Var Γ A → Tm Γ A
lam : Tm (Γ , A) B → Tm Γ (A⇒ B)

app : Tm Γ (A⇒ B) → Tm Γ A → Tm Γ B

5 / 26

Representing type theory in type theory

Rules for dependent function space and a base type

Γ ` A Γ.x : A ` B
Γ ` Π(x : A).B

Γ.x : A ` t : B
Γ ` λx .t : Π(x : A).B

Γ ` f : Π(x : A).B Γ ` a : A

Γ ` f a : B [x 7→ a]

Γ `
Γ ` U

Γ ` Â : U
Γ ` El Â

6 / 26

Representing type theory in type theory

A typed syntax of dependent types (i)
I Types depend on contexts
⇒ We need induction induction.

data Con : Set
data Ty : Con → Set

7 / 26

Representing type theory in type theory

A typed syntax of dependent types (ii)
I Types depend on contexts
⇒ We need induction induction.

I Substitutions are mentioned in the application rule:

app : Tm Γ (ΠAB)→ (a : Tm ΓA)→ Tm Γ (B [a])

⇒ We define an explicit substitution calculus.

data Con : Set
data Ty : Con → Set
data Tms : Con → Con → Set
data Tm : (Γ : Con) → Ty Γ → Set
[] : Ty Γ → Tms ∆ Γ → Ty ∆

...

7 / 26

Representing type theory in type theory

A typed syntax of dependent types (iii)
I Types depend on contexts.
⇒ We need induction induction.

I Substitutions are mentioned in the application rule:
⇒ We define an explicit substitution calculus.

I The following conversion rule for terms:

Γ ` A ∼ B Γ ` t : A
Γ ` t : B

⇒ Conversion (the relation including β, η) needs to be defined
mutually with the syntax.

I We need to add 4 new members to the inductive inductive
definition: ∼ for contexts, types, substitutions and terms.

7 / 26

Representing type theory in type theory

Representing conversion

I Lots of boilerplate:

I The ∼ relations are equivalence relations

I Coercion rules

I Congruence rules

I We need to work with setoids

I What we really want is to redefine equality _≡_ for the types
representing the syntax.

8 / 26

Representing type theory in type theory

Higher inductive types (HITs)
I An idea from homotopy type theory:

constructors for equalities.
I Example:

data I : Set where
left : I
right : I
segment : left ≡ right

RecI : (IM : Set)
(leftM : IM)

(rightM : IM)

(segmentM : leftM ≡ rightM)

→ I → IM

9 / 26

Representing type theory in type theory

Higher inductive types (HITs)
I An idea from homotopy type theory:

constructors for equalities.
I Example:

data I : Set where
left : I
right : I
segment : left ≡ right

RecI : (IM : Set)
(leftM : IM)

(rightM : IM)

(segmentM : leftM ≡ rightM)

→ I → IM

9 / 26

Representing type theory in type theory

Using the syntax
I We define the syntax as a HIIT, the conversion rules are

constructors: e.g. β : app (lam t) u ≡ t[u].

I The arguments of the non-dependent eliminator form a model of
type theory, equivalent to Categories with Families.

record Model : Set where
field ConM : Set

TyM : ConM → Set
TmM : (Γ : ConM) → TyM Γ → Set
lamM : TmM (Γ ,M A) BM → TmM Γ (ΠM A B)

βM : appM (lamM t) u ≡ t [u]M

...

I The eliminator says that the syntax is the initial model. 10 / 26

Specifying normalisation

Specifying normalisation

11 / 26

Specifying normalisation

Specifying normalisation

Neutral terms and normal forms (typed!):

n ::= x | n v Ne Γ A
v ::= n | λ x .v Nf Γ A

Normalisation is an isomorphism:

completeness norm ↓
Tm ΓA
Nf ΓA

↑ p–q stability

Soundness is given by congruence of equality:

t ≡ t ′ → norm t ≡ norm t ′

12 / 26

Specifying normalisation

Normalisation by Evaluation (NBE)
Syntax Model

Normal forms eliminator

quote

I First formulation (Berger and Schwichtenberg, 1991)

I Simply typed case (Altenkirch, Hofmann, Streicher 1995)

I Dependent types using untyped realizers (Abel, Coquand, Dybjer,
2007)

13 / 26

NBE for simple types

NBE for simple types

14 / 26

NBE for simple types

The presheaf model
I Presheaf models are proof-relevant versions of Kripke models.

I They are parameterised over a category, we choose REN: objects
are contexts, morphisms are lists of variables.

I A type A is interpreted as a presheaf JAK : RENop → Set.

I Given a context Γ we have JAKΓ : Set.
I Given a renaming β : REN(∆, Γ), there is a JAKΓ → JAK∆.

I The function type is interpreted as the “possible world” function
space: JA⇒ BKΓ = ∀∆.REN(∆, Γ)→ JAK∆ → JBK∆.

I The interpretation of the base type is another parameter. We
choose JιKΓ = Nf Γ ι.

15 / 26

NBE for simple types

The presheaf model
I Presheaf models are proof-relevant versions of Kripke models.

I They are parameterised over a category, we choose REN: objects
are contexts, morphisms are lists of variables.

I A type A is interpreted as a presheaf JAK : RENop → Set.

I Given a context Γ we have JAKΓ : Set.
I Given a renaming β : REN(∆, Γ), there is a JAKΓ → JAK∆.

I The function type is interpreted as the “possible world” function
space: JA⇒ BKΓ = ∀∆.REN(∆, Γ)→ JAK∆ → JBK∆.

I The interpretation of the base type is another parameter. We
choose JιKΓ = Nf Γ ι.

15 / 26

NBE for simple types

The presheaf model
I Presheaf models are proof-relevant versions of Kripke models.

I They are parameterised over a category, we choose REN: objects
are contexts, morphisms are lists of variables.

I A type A is interpreted as a presheaf JAK : RENop → Set.

I Given a context Γ we have JAKΓ : Set.
I Given a renaming β : REN(∆, Γ), there is a JAKΓ → JAK∆.

I The function type is interpreted as the “possible world” function
space: JA⇒ BKΓ = ∀∆.REN(∆, Γ)→ JAK∆ → JBK∆.

I The interpretation of the base type is another parameter. We
choose JιKΓ = Nf Γ ι.

15 / 26

NBE for simple types

The presheaf model
I Presheaf models are proof-relevant versions of Kripke models.

I They are parameterised over a category, we choose REN: objects
are contexts, morphisms are lists of variables.

I A type A is interpreted as a presheaf JAK : RENop → Set.

I Given a context Γ we have JAKΓ : Set.
I Given a renaming β : REN(∆, Γ), there is a JAKΓ → JAK∆.

I The function type is interpreted as the “possible world” function
space: JA⇒ BKΓ = ∀∆.REN(∆, Γ)→ JAK∆ → JBK∆.

I The interpretation of the base type is another parameter. We
choose JιKΓ = Nf Γ ι.

15 / 26

NBE for simple types

Quotation

The quote function is a natural transformation

quoteA : JAK →̇ Nf – A

i.e.
quoteA Γ : JAKΓ → Nf ΓA

Defined mutually with unquote:

unquoteA : Ne – A →̇ JAK

16 / 26

NBE for simple types

Quote and unquote

Ne – A Σ (Tm – A× JAK) RA Nf – A

Tm – A

unquote A quote A

17 / 26

NBE for simple types

With completeness

Ne – A Σ (Tm – A× JAK) RA Nf – A

Tm – A

unquote′A quote′A

p–q p–q
proj

RA is a presheaf logical relation between the syntax and the presheaf
model. It says equality at the base type.

18 / 26

NBE for dependent types

NBE for dependent types

19 / 26

NBE for dependent types

The presheaf model and quote

Types are interpreted as families of presheaves.

JΓK : RENop → Set

JΓ ` AK : (∆ : REN)→ JΓK∆ → Set

We define quote for contexts and types mutually.

quoteΓ : JΓK →̇ Nfs – Γ

quoteΓ`A : (α : JΓK∆)→ JAK∆ α→ Nf ∆
(
A[quoteΓ,∆ α]

)

20 / 26

NBE for dependent types

The presheaf model and quote

Types are interpreted as families of presheaves.

JΓK : RENop → Set

JΓ ` AK : (∆ : REN)→ JΓK∆ → Set

We define quote for contexts and types mutually.

quoteΓ : JΓK →̇ Nfs – Γ

quoteΓ`A : (α : JΓK∆)→ JAK∆ α→ Nf ∆
(
A[quoteΓ,∆ α]

)

20 / 26

NBE for dependent types

Defining quote, first try

Nes – Γ Σ (Tms – Γ× JΓK) RΓ Nfs – Γ

Tms – Γ

unquoteΓ quoteΓ

Quote for function space needs quoteA ◦ unquoteA ≡ id.
This follows from the logical relation RA.
Let’s define quote and completeness mutually!

21 / 26

NBE for dependent types

Defining quote, first try

Nes – Γ Σ (Tms – Γ× JΓK) RΓ Nfs – Γ

Tms – Γ

unquoteΓ quoteΓ

Quote for function space needs quoteA ◦ unquoteA ≡ id.

This follows from the logical relation RA.
Let’s define quote and completeness mutually!

21 / 26

NBE for dependent types

Defining quote, first try

Nes – Γ Σ (Tms – Γ× JΓK) RΓ Nfs – Γ

Tms – Γ

unquoteΓ quoteΓ

Quote for function space needs quoteA ◦ unquoteA ≡ id.
This follows from the logical relation RA.

Let’s define quote and completeness mutually!

21 / 26

NBE for dependent types

Defining quote, first try

Nes – Γ Σ (Tms – Γ× JΓK) RΓ Nfs – Γ

Tms – Γ

unquoteΓ quoteΓ

Quote for function space needs quoteA ◦ unquoteA ≡ id.
This follows from the logical relation RA.
Let’s define quote and completeness mutually!

21 / 26

NBE for dependent types

Defining quote, second try

Nes – Γ Σ (Tms – Γ× JΓK) RΓ Nfs – Γ

Tms – Γ

unquoteΓ quoteΓ

p–q p–q
proj

For unquote at the function space we need to define a semantic
function which works for every input, not necessarily related by the
relation. But quote needs ones which are related!

22 / 26

NBE for dependent types

Defining quote, second try

Nes – Γ Σ (Tms – Γ× JΓK) RΓ Nfs – Γ

Tms – Γ

unquoteΓ quoteΓ

p–q p–q
proj

For unquote at the function space we need to define a semantic
function which works for every input, not necessarily related by the
relation. But quote needs ones which are related!

22 / 26

NBE for dependent types

Defining quote, last try

Nes – Γ Σ (Tms – Γ) PΓ Nfs – Γ

Tms – Γ

unquoteΓ quoteΓ

p–q p–q
proj

Use a presheaf logical predicate.

23 / 26

NBE for dependent types

Presheaf logical predicate
I The Yoneda embedding of the syntax:

YΓ : RENop → Set := Tms – Γ

YA : ΣREN YΓ → Set := Tm – A[–]

Yσ : YΓ →̇Y∆ := σ ◦ –

Yt : YΓ
s→ YA := t[–]

24 / 26

NBE for dependent types

Presheaf logical predicate
I The Yoneda embedding of the syntax.

I P is a dependent version of the presheaf model:

YΓ : RENop → Set := Tms – Γ PΓ : ΣREN YΓ → Set

YA : ΣREN YΓ → Set := Tm – A[–] PA : ΣREN,YΓ,YA
PΓ → Set

Yσ : YΓ →̇Y∆ := σ ◦ – Pσ : ΣYΓ
PΓ

s→ P∆[Yσ]

Yt : YΓ
s→ YA := t[–] Pt : ΣYΓ

PΓ
s→ PA[Yt]

I We need the dependent eliminator to define it.

I At the base type:

I We had: JιKΓ = Nf Γ ι and Rι t n = (t ≡ pnq)

I Now we have: Pι t = Σ(n : Nf Γ ι).(t ≡ pnq)

25 / 26

NBE for dependent types

Presheaf logical predicate
I The Yoneda embedding of the syntax.

I P is a dependent version of the presheaf model:

YΓ : RENop → Set := Tms – Γ PΓ : ΣREN YΓ → Set

YA : ΣREN YΓ → Set := Tm – A[–] PA : ΣREN,YΓ,YA
PΓ → Set

Yσ : YΓ →̇Y∆ := σ ◦ – Pσ : ΣYΓ
PΓ

s→ P∆[Yσ]

Yt : YΓ
s→ YA := t[–] Pt : ΣYΓ

PΓ
s→ PA[Yt]

I We need the dependent eliminator to define it.

I At the base type:

I We had: JιKΓ = Nf Γ ι and Rι t n = (t ≡ pnq)

I Now we have: Pι t = Σ(n : Nf Γ ι).(t ≡ pnq)
25 / 26

Summary

Summary

I We defined the typed syntax of type theory as an explicit
substitution calculus using a quotient inductive inductive type

I Normalisation is specified as an isomorphism between terms and
normal forms

I We proved normalisation and completeness using a proof-relevant
presheaf logical predicate

I Most of this has been formalised in Agda

I Stability, injectivity of type constructors can be proven

I Question: how to prove decidability of conversion? N.b. normal
forms are indexed by non-normal types

26 / 26

	Representing type theory in type theory
	Specifying normalisation
	NBE for simple types
	NBE for dependent types

