

Thorsten Altenkirch, Ambrus Kaposi University of Nottingham

POPL, St Petersburg, Florida 20 January 2016

- To represent the syntax of Type Theory inside Type Theory
- Why?
 - Study the metatheory in a nice language
 - Template type theory

Expressing the judgements of Type Theory

$\Gamma \vdash t \ : \ A$

will be formalised as

t': Tm Γ A

(We are not interested in untyped terms)

Simple type theory in Agda (i)

data Ty : Set where ι : Ty \Rightarrow : Ty \rightarrow Ty \rightarrow Ty data Con : Set where : Con : Con \rightarrow Ty \rightarrow Con ___,___ data Var : Con \rightarrow Ty \rightarrow Set where : Var (Г , А) А zero suc : Var $\Gamma A \rightarrow Var (\Gamma, B) A$ data Tm : Con \rightarrow Ty \rightarrow Set where : Var $\Gamma A \rightarrow Tm \Gamma A$ var : $\text{Tm} \Gamma (A \Rightarrow B) \rightarrow \text{Tm} \Gamma A \rightarrow \text{Tm} \Gamma B$ app : Tm (Γ , A) B \rightarrow Tm Γ (A \Rightarrow B) lam

Simple type theory in Agda (ii)

• In addition, we need substitutions:

 $\begin{array}{rcl} \mathsf{Tms} & : \; \mathsf{Con} \; \to \; \mathsf{Con} \; \to \; \mathsf{Set} \\ _[_] & : \; \mathsf{Tm} \; \Gamma \; \mathsf{A} \; \to \; \mathsf{Tms} \; \Delta \; \Gamma \; \to \; \mathsf{Tm} \; \Delta \; \mathsf{A} \end{array}$

• Now we can define a conversion relation:

 $_{-}$: Tm Γ A → Tm Γ A → Set eg. app (lam t) u ~ t [id , u]

• The intended syntax is a quotient:

Tm Γ A / \sim

The syntax of Dependent Type Theory (i)

- Types depend on contexts
- Substitutions are mentioned in the application rule: app : Tm Γ (Π A B) (a : Tm Γ A) \rightarrow Tm Γ (B [a])
- We need an inductive-inductive definition:

The syntax of Dependent Type Theory (ii)

• In addition, there is a coercion rule for terms:

$$\frac{\Gamma \vdash A \sim B \qquad \Gamma \vdash t : A}{\Gamma \vdash t : B}$$

• This forces us to define conversion relations mutually:

data Con : Set data Ty : Con \rightarrow Set **data** Tms : Con \rightarrow Con \rightarrow Set : $(\Gamma : Con) \rightarrow Ty \Gamma \rightarrow Set$ data Tm data \sim Con : Con \rightarrow Con \rightarrow Set data $\ \ \mathsf{Tms} \ \ : \ \mathsf{Tms} \ \Delta \ \Gamma \ \rightarrow \ \mathsf{Tms} \ \Delta \ \Gamma \ \rightarrow \ \mathsf{Set}$ **data** ~Tm : Tm Γ A \rightarrow Tm Γ A \rightarrow Set 7/17

Lots of boilerplate

- The _~X_ relations are equivalence relations
- Coercion rules
- Congruence rules
- We need to work with setoids

- Equality (the identity type) is an equivalence relation
- We can coerce between equal types
- Equality is a congruence
- What about the extra equalities (eg. β , η for Π)?

Higher inductive types

- An idea from homotopy type theory: constructors for equalities.
- Example:

data I	:	Set where	
zero	:	I	
one	:	1	
segment	:	${\sf zero}\ \equiv\ {\sf one}$	

Higher inductive types

- An idea from homotopy type theory: constructors for equalities.
- Example:

data I	: Set where
zero	: 1
one	:
segmer	nt : zero \equiv one

Quotient inductive types (QITs)

- A higher inductive type which is truncated to an h-set.
- They are *not* the same as quotient types: equality constructors are defined at the same time
- QITs can be simulated in Agda

The syntax of Dependent Type Theory (iii)

- We defined the syntax of a basic Type Theory as a quotient inductive inductive type (with Π and an uninterpreted family of types U, El)
- We don't need to state the equivalence relation, coercion, congruence laws anymore
- We collect the arguments of the recursor into a record:

 $\begin{array}{rll} \textbf{record} \ \mathsf{Model} \ : \ \mathsf{Set} \ \textbf{where} \\ \textbf{field} \ \mathsf{Con}^\mathsf{M} & : \ \mathsf{Set} \\ & \mathsf{Ty}^\mathsf{M} & : \ \mathsf{Con}^\mathsf{M} \ \to \ \mathsf{Set} \end{array}$

• which is the type of algebras for the QIT = the type of models of Type Theory, close to $CwF_{12/17}$

Applications (i): standard model

• A sanity check

. . .

• Every syntactic construct is interpreted as the corresponding metatheoretic construction.

Applications (ii): logical predicate interpretation

- An interpretation from the syntax into the syntax
- Bernardy-Jansson-Paterson: Parametricity and Dependent Types, 2012
- A type is interpreted as a logical predicate over that type
- A term is interpreted as a proof that it satisfies the predicate
- Automated derivation of free theorems

Applications (iii): presheaf model

- \bullet Given a category ${\cal C}$
- \bullet Contexts are presheaves over ${\cal C}$
- Types are families of presheaves, terms are sections
- Normalisation by evaluation (NBE):
 - A presheaf over the category of renamings
 - We can generalise NBE from Simple Type Theory to Type Theory (formalisation in progress)

Further work

- We internalized a very basic type theory, but this can be extended easily with universes and inductive types.
- We used axioms (quotient inductive types, functional extensionality) in our metatheory. This can be solved by using cubical type theory.
- If we work within HoTT, we can only eliminate into h-sets. Hence, the standard model doesn't work as described.

Template type theory

- Given a model of type theory, together with new constants in that model
- We can interpret code that uses the new constants inside the model
- The code can use all the conveniences such as implicit arguments, pattern matching etc.
- This way we can justify extensions of type theory:
 - guarded type theory
 - local state monad
 - parametricity
 - homotopy type theory