
C
o
n
si
st

en
t *
Complete *
W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
O
P
L
*

Ar
tifact

*
A
E
C

Type Theory in Type Theory
using

Quotient Inductive Types

Thorsten Altenkirch, Ambrus Kaposi

University of Nottingham

POPL, St Petersburg, Florida
20 January 2016

Goal

To represent the syntax of Type Theory inside Type
Theory

Why?

I Study the metatheory in a nice language
I Template type theory

2 / 17

Expressing the judgements of Type Theory

Γ ` t : A

will be formalised as

t’ : Tm Γ A

(We are not interested in untyped terms)

3 / 17

Simple type theory in Agda (i)
data Ty : Set where
ι : Ty
⇒ : Ty → Ty → Ty

data Con : Set where
• : Con
, : Con → Ty → Con

data Var : Con → Ty → Set where
zero : Var (Γ , A) A
suc : Var Γ A → Var (Γ , B) A

data Tm : Con → Ty → Set where
var : Var Γ A → Tm Γ A
app : Tm Γ (A⇒ B) → Tm Γ A → Tm Γ B
lam : Tm (Γ , A) B → Tm Γ (A⇒ B)

4 / 17

Simple type theory in Agda (ii)
In addition, we need substitutions:

Tms : Con → Con → Set
[] : Tm Γ A → Tms ∆ Γ → Tm ∆ A

Now we can define a conversion relation:

~ : Tm Γ A → Tm Γ A → Set

eg. app (lam t) u ∼ t [id , u]

The intended syntax is a quotient:

Tm Γ A / ∼

5 / 17

The syntax of Dependent Type Theory (i)

Types depend on contexts

Substitutions are mentioned in the application rule:
app : Tm Γ (Π A B) (a : Tm Γ A) → Tm Γ (B [a])

We need an inductive-inductive definition:

data Con : Set
data Ty : Con → Set
data Tms : Con → Con → Set
data Tm : (Γ : Con) → Ty Γ → Set

6 / 17

The syntax of Dependent Type Theory (ii)
In addition, there is a coercion rule for terms:

Γ ` A ∼ B Γ ` t : A
Γ ` t : B

This forces us to define conversion relations mutually:

data Con : Set
data Ty : Con → Set
data Tms : Con → Con → Set
data Tm : (Γ : Con) → Ty Γ → Set
data _~Con_ : Con → Con → Set
data _~Ty_ : Ty Γ → Ty Γ → Set
data _~Tms_ : Tms ∆ Γ → Tms ∆ Γ → Set
data _~Tm_ : Tm Γ A → Tm Γ A → Set

7 / 17

Lots of boilerplate

The _~X_ relations are equivalence relations

Coercion rules

Congruence rules

We need to work with setoids

8 / 17

The identity type _≡_

Equality (the identity type) is an equivalence relation

We can coerce between equal types

Equality is a congruence

What about the extra equalities (eg. β, η for Π)?

9 / 17

Higher inductive types
An idea from homotopy type theory:
constructors for equalities.
Example:

data I : Set where
zero : I
one : I
segment : zero ≡ one

RecI : (IM : Set)
(zeroM : IM)

(oneM : IM)

(segmentM : zeroM ≡ oneM)

→ I → IM

10 / 17

Higher inductive types
An idea from homotopy type theory:
constructors for equalities.
Example:

data I : Set where
zero : I
one : I
segment : zero ≡ one

RecI : (IM : Set)
(zeroM : IM)

(oneM : IM)

(segmentM : zeroM ≡ oneM)

→ I → IM
10 / 17

Quotient inductive types (QITs)

A higher inductive type which is truncated to an h-set.

They are not the same as quotient types: equality
constructors are defined at the same time

QITs can be simulated in Agda

11 / 17

The syntax of Dependent Type Theory (iii)
We defined the syntax of a basic Type Theory as a
quotient inductive inductive type (with Π and an
uninterpreted family of types U, El)

We don’t need to state the equivalence relation,
coercion, congruence laws anymore

We collect the arguments of the recursor into a record:

record Model : Set where
field ConM : Set

TyM : ConM → Set
...

which is the type of algebras for the QIT
= the type of models of Type Theory, close to CwF

12 / 17

Applications (i): standard model

A sanity check

Every syntactic construct is interpreted as the
corresponding metatheoretic construction.

ConM = Set
TyM JΓK = JΓK → Set

ΠM JAK JBK γ = (x : JAK γ) → JBK (γ , x)

lamM JtK γ = λ x → JtK (γ , x)
...

13 / 17

Applications (ii): logical predicate
interpretation

An interpretation from the syntax into the syntax

Bernardy-Jansson-Paterson: Parametricity and
Dependent Types, 2012

A type is interpreted as a logical predicate over that
type

A term is interpreted as a proof that it satisfies the
predicate

Automated derivation of free theorems

14 / 17

Applications (iii): presheaf model

Given a category C

Contexts are presheaves over C

Types are families of presheaves, terms are sections

Normalisation by evaluation (NBE):

I A presheaf over the category of renamings
I We can generalise NBE from Simple Type Theory
to Type Theory (formalisation in progress)

15 / 17

Further work

We internalized a very basic type theory, but this can
be extended easily with universes and inductive types.

We used axioms (quotient inductive types, functional
extensionality) in our metatheory. This can be solved
by using cubical type theory.

If we work within HoTT, we can only eliminate into
h-sets. Hence, the standard model doesn’t work as
described.

16 / 17

Template type theory
Given a model of type theory, together with new
constants in that model

We can interpret code that uses the new constants
inside the model

The code can use all the conveniences such as implicit
arguments, pattern matching etc.

This way we can justify extensions of type theory:

I guarded type theory
I local state monad
I parametricity
I homotopy type theory

17 / 17

