Type Theory in Type Theory
using
Quotient Inductive Types

Thorsten Altenkirch, Ambrus Kaposi
University of Nottingham

POPL, St Petersburg, Florida
20 January 2016

Goal

@ To represent the syntax of Type Theory inside Type
Theory

o Why?

» Study the metatheory in a nice language

» Template type theory

2/17

Expressing the judgements of Type Theory

=t : A
will be formalised as

t: TmlA

(We are not interested in untyped terms)

3/17

Simple type theory in Agda (i)

data Ty : Set where

L c Ty

= iy = Ty = Ty
data Con : Set where

° : Con

L : Con —» Ty — Con
data Var : Con — Ty — Set where
zero : Var ([, A)A

suc : VarT A — Var (I, B) A
dataTm : Con — Ty — Set where
var :VarT'A = TmTl A
app : TmIFT(A=B) - TmlTA — TmTIB

lam : Tm(T,A)B — TmT (A= B)

4/17

Simple type theory in Agda (ii)
@ In addition, we need substitutions:
Tms : Con — Con — Set

[]:TmTA = TmsAT - TmAA

@ Now we can define a conversion relation:
7 TmlTA —- TmlA — Set
eg. app (lamt)u~t[id, u]
@ The intended syntax is a quotient:

TmlFA / ~

5/17

The syntax of Dependent Type Theory (i)

@ Types depend on contexts

@ Substitutions are mentioned in the application rule:
app: TmT (MAB)(a: TmTA) — Tml(B[a])

@ We need an inductive-inductive definition:

data Con : Set

data Ty : Con — Set

data Tms : Con — Con — Set
dataTm : (I : Con) — Tyl — Set

6/17

The syntax of Dependent Type Theory (ii)

@ In addition, there is a coercion rule for terms:

[FA~B [Ft:A

[—t:B

@ This forces us to define conversion relations mutually:

data Con
data Ty

data Tms
data Tm

data “Con
data “Ty
data "Tms
data "Tm

. Set

- Con — Set

: Con — Con — Set

: (F: Con) — Tyl — Set

: Con — Con — Set

Tyl — Tyl — Set

- Tms AT — Tms AT — Set
: TmITA — Tml A — Set

7/17

Lots of boilerplate

@ The 7X relations are equivalence relations

@ Coercion rules
@ Congruence rules

@ We need to work with setoids

8/17

The identity type =

e Equality (the identity type) is an equivalence relation
@ We can coerce between equal types
@ Equality is a congruence

@ What about the extra equalities (eg. 3, n for)7

9/17

Higher inductive types

@ An idea from homotopy type theory:
constructors for equalities.
@ Example:

data | : Set where
Zero s
one s

segment I Zero = one

10/17

Higher inductive types

@ An idea from homotopy type theory:

constructors for equalities.

@ Example:
data | . Set where
zero o
one o
segment : zero = one
Recl : (IM: Set)
(zero - M)
(oneM . M)
(segment™ : zeroM =

—] - M

oneM)

10/17

Quotient inductive types (QITs)

@ A higher inductive type which is truncated to an h-set.

@ They are not the same as quotient types: equality
constructors are defined at the same time

@ QITs can be simulated in Agda

11/17

The syntax of Dependent Type Theory (iii)

@ We defined the syntax of a basic Type Theory as a
quotient inductive inductive type (with 1 and an
uninterpreted family of types U, El)

@ We don't need to state the equivalence relation,
coercion, congruence laws anymore

@ We collect the arguments of the recursor into a record:

record Model : Set where
field ConM : Set
WM ConM — Set

@ which is the type of algebras for the QIT
= the type of models of Type Theory, close to CwF

12/17

Applications (i): standard model

@ A sanity check

@ Every syntactic construct is interpreted as the
corresponding metatheoretic construction.

ConM = Set
M] = [I] — Set
n" [Al[Bly = (x: [Alv) — [Bl (v %)

lam™ [t] v = Ax = [t] (v, x)

13/17

Applications (ii): logical predicate
Interpretation
@ An interpretation from the syntax into the syntax

@ Bernardy-Jansson-Paterson: Parametricity and
Dependent Types, 2012

@ A type is interpreted as a logical predicate over that
type

@ A term is interpreted as a proof that it satisfies the
predicate

@ Automated derivation of free theorems

14/17

Applications (iii): presheaf model

@ Given a category C

@ Contexts are presheaves over C

@ Types are families of presheaves, terms are sections
@ Normalisation by evaluation (NBE):

» A presheaf over the category of renamings

» We can generalise NBE from Simple Type Theory
to Type Theory (formalisation in progress)

15/17

Further work

@ We internalized a very basic type theory, but this can
be extended easily with universes and inductive types.

@ We used axioms (quotient inductive types, functional
extensionality) in our metatheory. This can be solved

by using cubical type theory.

@ If we work within HoTT, we can only eliminate into
h-sets. Hence, the standard model doesn't work as

described.

16 /17

Template type theory

@ Given a model of type theory, together with new
constants in that model

@ We can interpret code that uses the new constants
inside the model

@ The code can use all the conveniences such as implicit
arguments, pattern matching etc.

@ This way we can justify extensions of type theory:

» guarded type theory

» local state monad

» parametricity

» homotopy type theory

17 /17

