Algebraic programming language theory

Ambrus Kaposi
EFOP-3.6.3-VEKOP-16-2017-00002
PLC Department Workshop
Bugyi

11 January 2019

A program is a

> string
sequence of lexical elements

syntax tree

well-scoped syntax tree
well-typed syntax tree
well-typed syntax tree quotiented by semantic equality

Steps

> string
> lexical analysis
> sequence of lexical elements
parsing
syntax tree
scope-checking \downarrow well-scoped syntax tree
type-checking well-typed syntax tree
well-typed syntax tree quotiented by semantic equality

Errors

scope-checking $\mid \underbrace{\text { syntax tree }}_{\text {var not in scope }}$ well-scoped syntax tree type-checking
 well-typed syntax tree
well-typed syntax tree quotiented by semantic equality

Equalities

string

lexical analysis
sequence of lexical elements

$$
"(1+2)+3 "="(1+1)+3 "
$$

parsing
syntax tree $\quad[(, 1,+, 1),+, 3]=,[(,(, 1,+, 1),),+, 3$,
scope-checking \downarrow
well-scoped syntax tree
$\lambda x \cdot x=\lambda y \cdot y$
type-checking
well-typed syntax tree

algebraic syntax
$(\lambda x \cdot x+x) 3=6$

Nonsense theorems

string

sequence of lex elements
spaces don't matter

AST redundant bracket removal preserves ws removal
well-scoped syntax tree
α-renaming preserves matching brackets
well-typed syntax tree
α-renaming preserves typing
algebraic syntax
β-reduction preserves typing

An algebraic structure

A group has the following components:

$$
\begin{array}{ll}
\mathrm{C} & : \text { Set } \\
-\otimes- & : \mathrm{C} \rightarrow \mathrm{C} \rightarrow \mathrm{C} \\
\mathrm{u} & : \mathrm{C} \\
-_{-1}^{-1} & : \mathrm{C} \rightarrow \mathrm{C} \\
\text { ass } & :(a \otimes b) \otimes c=a \otimes(b \otimes c) \\
\text { idl } & : \mathrm{u} \otimes a=a \\
\text { idr } & : a \otimes \mathrm{u}=a \\
\text { invl } & : a^{-1} \otimes a=\mathrm{u} \\
\text { invl } & : a \otimes a^{-1}=\mathrm{u}
\end{array}
$$

An algebraic structure

Groups A and B and a group homomorphism f.
$C_{A} \quad:=\mathbb{Z}$
$C_{B} \quad:=\mathbb{Z}_{3}$
$m \otimes_{A} n:=m+n$
$\mathrm{u}_{A} \quad:=0$
$m \otimes_{B} n:=m+n(\bmod 3)$
$m^{-1_{A}} \quad:=-m$
$\mathrm{u}_{B} \quad:=0$
$m^{-1_{B}} \quad:=3-m$
the laws hold
the laws hold

$$
\begin{array}{ll}
f_{\mathrm{C}} & : \mathrm{C}_{A} \rightarrow \mathrm{C}_{B} \\
f_{\mathrm{C}} m & :=m(\bmod 3) \\
f_{\otimes} & : f_{\mathrm{C}}\left(m \otimes_{A} n\right)=f_{\mathrm{C}} m \otimes_{B} f_{\mathrm{C}} n \\
f_{\mathrm{u}} & : f_{\mathrm{C}} \mathrm{u}_{A}=\mathrm{u}_{B} \\
f_{-1} & : f_{\mathrm{C}}\left(m^{-1_{A}}\right)=\left(f_{\mathrm{C}} m\right)^{-1_{B}}
\end{array}
$$

Another algebraic structure

An algebra for the expression language has the following components:

$$
\begin{array}{ll}
\text { Ty } & : \text { Set } \\
\text { Tm } & : \text { Ty } \rightarrow \text { Set } \\
\text { Bool } & : \text { Ty } \\
\text { Nat } & : \text { Ty } \\
\text { true } & : \text { Tm Bool } \\
\text { false } & : \text { Tm Bool } \\
\text { if-then-else- }: \text { Tm Bool } \rightarrow \text { Tm } A \rightarrow \text { Tm } A \rightarrow \text { Tm } A \\
\text { num } & : \mathbb{N} \rightarrow \text { Tm Nat } \\
\text { isZero } & : \text { Tm Nat } \rightarrow \text { Tm Bool } \\
\text { if } \beta_{1} & : \text { if true then } t \text { else } t^{\prime}=t \\
\text { if } \beta_{2} & : \text { if false then } t \text { else } t^{\prime}=t^{\prime} \\
\text { isZero } \beta_{1} & : \text { isZero }(\text { num } 0)=\operatorname{true} \\
\text { isZero } \beta_{2} & : \text { isZero }(\text { num }(1+n))=\text { false }
\end{array}
$$

Syntax and homomorphisms

The syntax for the expression language is an algebra $\mathrm{Ty}_{S}, \mathrm{Tm}_{S}$, Bool $_{S}$, etc, such that there is a homomorphism from it to any other algebra A. The homomorphism is called:

- an interpreter if $\mathrm{Ty}_{A}=$ Set and $\mathrm{Tm}_{A} T=T$ in the target algebra
- a compiler if $\mathrm{Ty}_{A}=\mathrm{Ty}_{S}^{\prime}$ and $\mathrm{Tm}_{A} T^{\prime}=\mathrm{Tm}_{S}^{\prime} T^{\prime}$ for some other syntax in the target algebra
- an optimisation/program transformation that preserves types and conversion if $\mathrm{Ty}_{A}=\mathrm{Ty}$, and $\mathrm{Tm}_{A} T=\mathrm{Tm}_{S} T$ in the target algebra

Old style approach

$$
\begin{aligned}
& \text { Ty }::=\text { Bool } \mid \text { Nat } \\
& \operatorname{Tm}::=\text { true } \mid \text { false } \mid \text { if } t \text { then } t^{\prime} \text { else } t^{\prime \prime} \mid \text { num } n \mid \text { isZero } t
\end{aligned}
$$

$$
(-:-) \subseteq \operatorname{Tm} \times \operatorname{Ty} \quad(-\mapsto-) \subseteq \operatorname{Tm} \times \operatorname{Tm}
$$

$$
\frac{t: \text { Bool } t^{\prime}: A \quad t^{\prime \prime}: A}{\text { if } t \text { then } t^{\prime} \text { else } t^{\prime \prime}: A}
$$

$$
\frac{n \in \mathbb{N}}{\text { num } n: \text { Nat }} \quad \frac{t: \text { Nat }}{\text { isZero } t: \text { Bool }}
$$

$$
\overline{\text { if true then } t \text { else } t^{\prime} \mapsto t} \quad \overline{\text { if false then } t \text { else } t^{\prime} \mapsto t^{\prime}}
$$

$$
\frac{t \mapsto t_{1}}{\text { if } t \text { then } t^{\prime} \text { else } t^{\prime \prime} \mapsto \text { if } t_{1} \text { then } t^{\prime} \text { else } t^{\prime \prime}} \quad \overline{\text { isZero }(\text { num } 0) \mapsto \text { true }}
$$

$$
\overline{\text { isZero (num }(1+n)) \mapsto \text { true }} \quad \frac{t \mapsto t^{\prime}}{\text { isZero } t \mapsto \text { isZero } t^{\prime}}
$$

Conversion is the reflexive, transitive, symmetric closure of $-\mapsto-$.

What can you do on the high level?

We described the syntax of (a subset of) Agda using this technique and wrote a total interpreter for it. We also wrote compilers:

- Closure conversion: towards machine code
- Compile types to setoids: add function extensionality to Agda
- Compile types to reflexive graphs: add parametricity to Agda
- Future: extending a programming language with new principles
- Future: static analysis

You need to respect equalities. You can't print terms, only normal forms.
Why is it good? (i) less boilerplate. (ii) guides you on the path.

Challenges

These are very general notions of algebras, not well studied. We started describing them, they are called QIITs (next week POPL, Lisbon). You need a good metatheory (logic) to reason about them, i.e. type theory.

