
Algebraic programming language theory

Ambrus Kaposi

EFOP-3.6.3-VEKOP-16-2017-00002

PLC Department Workshop
Bugyi

11 January 2019

1 / 13



A program is a
string

sequence of lexical elements

syntax tree

well-scoped syntax tree

well-typed syntax tree

well-typed syntax tree quotiented by semantic equality
2 / 13



Steps
string

sequence of lexical elements

syntax tree

well-scoped syntax tree

well-typed syntax tree

well-typed syntax tree quotiented by semantic equality

lexical analysis

parsing

scope-checking

type-checking

3 / 13



Errors
string

sequence of lexical elements

syntax tree

well-scoped syntax tree

well-typed syntax tree

well-typed syntax tree quotiented by semantic equality

lexical analysis

parsing

scope-checking

type-checking

invalid lexical els

wrong number of params

var not in scope

type error

4 / 13



Equalities
string

sequence of lexical elements

syntax tree

well-scoped syntax tree

well-typed syntax tree

algebraic syntax

lexical analysis

parsing

scope-checking

type-checking

"(1+2)+3" = "(1 + 1) + 3"

[(, 1,+, 1, ),+, 3] = [(, (, 1,+, 1, ), ),+, 3]

λx .x = λy .y

(λx .x + x) 3 = 6
5 / 13



Nonsense theorems
string

sequence of lex elements

AST

well-scoped syntax tree

well-typed syntax tree

algebraic syntax

spaces don’t matter

redundant bracket removal preserves ws removal

α-renaming preserves matching brackets

α-renaming preserves typing

β-reduction preserves typing
6 / 13



An algebraic structure

A group has the following components:

C : Set

– ⊗ – : C→ C→ C

u : C

–−1 : C→ C

ass : (a ⊗ b)⊗ c = a ⊗ (b ⊗ c)

idl : u⊗ a = a

idr : a ⊗ u = a

invl : a−1 ⊗ a = u

invl : a ⊗ a−1 = u

7 / 13



An algebraic structure
Groups A and B and a group homomorphism f .

CA := Z CB := Z3

m ⊗A n := m + n m ⊗B n := m + n (mod 3)

uA := 0 uB := 0

m−1A := −m m−1B := 3−m

the laws hold the laws hold

fC : CA → CB

fC m := m (mod 3)

f⊗ : fC (m ⊗A n) = fC m ⊗B fC n

fu : fC uA = uB

f−1 : fC (m−1A) = (fC m)−1B

8 / 13



Another algebraic structure
An algebra for the expression language has the following components:

Ty : Set

Tm : Ty→ Set

Bool : Ty

Nat : Ty

true : Tm Bool

false : Tm Bool

if –then–else– : Tm Bool→ TmA→ TmA→ TmA

num : N→ Tm Nat

isZero : Tm Nat→ Tm Bool

ifβ1 : if true then t else t ′ = t

ifβ2 : if false then t else t ′ = t ′

isZeroβ1 : isZero (num 0) = true

isZeroβ2 : isZero (num (1 + n)) = false
9 / 13



Syntax and homomorphisms

The syntax for the expression language is an algebra TyS , TmS ,
BoolS , etc, such that there is a homomorphism from it to any other
algebra A. The homomorphism is called:

an interpreter if TyA = Set and TmA T = T in the target algebra

a compiler if TyA = Ty′S and TmA T
′ = Tm′S T

′ for some other
syntax in the target algebra

an optimisation/program transformation that preserves types and
conversion if TyA = TyS , and TmA T = TmS T in the target
algebra

10 / 13



Old style approach

Ty ::= Bool |Nat

Tm ::= true | false | if t then t ′ else t ′′ | num n | isZero t

(– : –) ⊆ Tm× Ty (– 7→ –) ⊆ Tm× Tm

true : Bool false : Bool
t : Bool t ′ : A t ′′ : A

if t then t ′else t ′′ : A
n ∈ N

num n : Nat
t : Nat

isZero t : Bool

if true then t else t ′ 7→ t if false then t else t ′ 7→ t ′

t 7→ t1
if t then t ′ else t ′′ 7→ if t1 then t ′ else t ′′ isZero (num 0) 7→ true

isZero (num (1 + n)) 7→ true
t 7→ t ′

isZero t 7→ isZero t ′

Conversion is the reflexive, transitive, symmetric closure of – 7→ –.
11 / 13



What can you do on the high level?

We described the syntax of (a subset of) Agda using this technique
and wrote a total interpreter for it. We also wrote compilers:

Closure conversion: towards machine code

Compile types to setoids: add function extensionality to Agda

Compile types to reflexive graphs: add parametricity to Agda

Future: extending a programming language with new principles

Future: static analysis

You need to respect equalities. You can’t print terms, only normal
forms.
Why is it good? (i) less boilerplate. (ii) guides you on the path.

12 / 13



Challenges

These are very general notions of algebras, not well studied. We
started describing them, they are called QIITs (next week POPL,
Lisbon). You need a good metatheory (logic) to reason about them,
i.e. type theory.

13 / 13


