Algebraic programming language theory

Ambrus Kaposi
EFOP-3.6.3-VEKOP-16-2017-00002

PLC Department Workshop

Bugyi
11 January 2019

SZECHENW@
E op “‘ m
Eurépai Szo

Alap

MAGHARORSZAS . T T T

A program is a

string
sequence of lexical elements
syntax tree
well-scoped syntax tree
well-typed syntax tree

well-typed syntax tree quotiented by semantic equality

)

13

Steps

string

lexical analysis

sequence of lexical elements

parsing

syntax tree

scope-checking
well-scoped
type-checking
well-typed

well-typed syntax tree quotiented by semantic equality

syntax tree

syntax tree

3/13

Errors

lexical analysis

string\/

invalid lexical els

sequence of lexical elements

parsing

scope-checking
well-scoped
type-checking
well-typed

wrong number of params

syntax tree\—/

var not in scope

type error
syntax tree

well-typed syntax tree quotiented by semantic equality

13

Equalities
string

lexical analysis

sequence of lexical elements "(1+2)+3" = "(1 + 1) + 3"

parsing
syntax tree

scope-checking

1,+1,),+31=[,(1+1,),),+,3

well-scoped syntax tree AX.X = A\y.y

type-checking

well-typed syntax tree

algebraic syntax

(Mxx+x)3=6

13

Nonsense theorems

string

sequence of lex elements spaces don't matter

AST redundant bracket removal preserves ws removal

well-scoped syntax tree a-renaming preserves matching brackets

well-typed syntax tree a-renaming preserves typing

algebraic syntax [-reduction preserves typing

6

13

An algebraic structure

A group has the following components:

ass
id|
idr
invl

invl

: Set

C—-C—>C

- C

C—C
(a®@b)®c=a®(b®c)
u®a=a

ra®u=a

ral®a=u

ra®al=u

An algebraic structure
Groups A and B and a group homomorphism f.

Ca =7 Cg =73
m@an:=m+n m®g n:=m+ n(mod3)
Ua =0 ug =0
m = —m mlt =3-_m
the laws hold the laws hold

fc Ch—Cp

fc m := m(mod 3)

fo fc(m®an)=fcm®gfcn
fo fcua=ugp

fq fc(m4) = (fcm)'e

13

Another algebraic structure
An algebra for the expression language has the following components:

Ty : Set

Tm : Ty — Set

Bool : Ty

Nat Ty

true : Tm Bool

false : Tm Bool

if—then—else— : TmBool - TmA — TmA — TmA
num :N — TmNat

isZero : Tm Nat — Tm Bool

if 3, ciftruethen telset’ = t
if 3, - if falsethen telse t’ = t/
isZerof3; :isZero (num0) = true

isZero/3, s isZero (num (1 + n)) = false

Syntax and homomorphisms

The syntax for the expression language is an algebra Tyg, Tmsg,
Bools, etc, such that there is a homomorphism from it to any other
algebra A. The homomorphism is called:

@ an interpreter if Ty, = Set and Tma T = T in the target algebra

@ a compiler if Ty, = Tys and Tma T’ = Tm’ T’ for some other
syntax in the target algebra

@ an optimisation/program transformation that preserves types and
conversion if Ty, = Tyg, and Tma T = Tmg T in the target
algebra

10/13

Old style approach

Ty ::= Bool |Nat
Tm ::= true|false | if t then t' else t” | num n|isZero t
(-:=)CTmxTy (-—-)CTmxTm
t : Bool t A t" A

true : Bool false : Bool if tthen t'elset” : A
neN t : Nat
num n : Nat isZerot : Bool
if truethentelset’ — t if falsethen telset’ — t’
t—t
if t then t’ else t” — if t; then t’ else t” isZero (num0) +— true
ti— t
isZero (num (1 + n)) — true isZero t — isZero t’

Conversion is the reflexive, transitive, symmetric closure of — +— —.

11/13

What can you do on the high level?

We described the syntax of (a subset of) Agda using this technique
and wrote a total interpreter for it. We also wrote compilers:

@ Closure conversion: towards machine code

@ Compile types to setoids: add function extensionality to Agda
@ Compile types to reflexive graphs: add parametricity to Agda
@ Future: extending a programming language with new principles
o Future: static analysis

You need to respect equalities. You can't print terms, only normal
forms.
Why is it good? (i) less boilerplate. (ii) guides you on the path.

12 /13

Challenges

These are very general notions of algebras, not well studied. We
started describing them, they are called QIITs (next week POPL,

Lisbon). You need a good metatheory (logic) to reason about them,
i.e. type theory.

13 /13

