Algebraic programming language theory

Ambrus Kaposi

EFOP-3.6.3-VEKOP-16-2017-00002

PLC Department Workshop Bugyi

11 January 2019

string

sequence of lexical elements

syntax tree

well-scoped syntax tree

well-typed syntax tree

well-typed syntax tree quotiented by semantic equality

Steps

Errors

Equalities

string lexical analysis sequence of lexical elements "(1+2)+3" = "(1 + 1) + 3"parsing [(, 1, +, 1,), +, 3] = [(, (, 1, +, 1,),), +, 3]syntax tree scope-checking well-scoped syntax tree $\lambda x.x = \lambda y.y$ type-checking well-typed syntax tree $(\lambda x.x+x)3=6$ algebraic syntax

Nonsense theorems

string

sequence of lex elements

spaces don't matter

AST redundant bracket removal preserves ws removal

well-scoped syntax tree $-\alpha\text{-renaming}$ preserves matching brackets

well-typed syntax tree

 α -renaming preserves typing

algebraic syntax β -reduction preserves typing

An algebraic structure

A group has the following components:

C : Set $-\otimes -: \mathsf{C} \to \mathsf{C} \to \mathsf{C}$ u : C $-^{-1}$: $C \rightarrow C$ ass : $(a \otimes b) \otimes c = a \otimes (b \otimes c)$ idl : $\mathbf{u} \otimes \mathbf{a} = \mathbf{a}$ idr : $a \otimes u = a$ invl : $a^{-1} \otimes a = u$ invl : $a \otimes a^{-1} = u$

An algebraic structure

Groups A and B and a group homomorphism f.

$$f_{C} : C_{A} \to C_{B}$$

$$f_{C} m := m \pmod{3}$$

$$f_{\otimes} : f_{C} (m \otimes_{A} n) = f_{C} m \otimes_{B} f_{C} n$$

$$f_{u} : f_{C} u_{A} = u_{B}$$

$$f_{-1} : f_{C} (m^{-1_{A}}) = (f_{C} m)^{-1_{B}}$$

Another algebraic structure

An algebra for the expression language has the following components:

Ту	: Set
Tm	: Ty \rightarrow Set
Bool	: Ту
Nat	: Ту
true	: Tm Bool
false	: Tm Bool
if-then-else-	$: TmBool\toTmA\toTmA\toTmA$
num	$: \mathbb{N} \to TmNat$
isZero	: Tm Nat $ ightarrow$ Tm Bool
$ifeta_1$: if true then t else $t^\prime = t$
$ifeta_2$: if false then t else $t'=t'$
$isZero\beta_1$: isZero (num 0) $=$ true
$isZeroeta_2$: isZero (num $(1 + n)) =$ false

Syntax and homomorphisms

The syntax for the expression language is an algebra Ty_S , Tm_S , Bool_S, etc, such that there is a homomorphism from it to any other algebra A. The homomorphism is called:

- an interpreter if $Ty_A = Set$ and $Tm_A T = T$ in the target algebra
- a compiler if $Ty_A = Ty'_S$ and $Tm_A T' = Tm'_S T'$ for some other syntax in the target algebra
- an optimisation/program transformation that preserves types and conversion if $Ty_A = Ty_S$, and $Tm_A T = Tm_S T$ in the target algebra

Old style approach

Ty ::= Bool | Nat Tm ::= true | false | if t then t' else t'' | num n | isZero t $(-:-) \subset \mathsf{Tm} \times \mathsf{Ty} \quad (-\mapsto -) \subseteq \mathsf{Tm} \times \mathsf{Tm}$ t: Bool t': A t'': Aif t then t'else t'' : Atrue : Bool false : Bool $\frac{n \in \mathbb{N}}{\operatorname{num} n : \operatorname{Nat}} \qquad \frac{t : \operatorname{Nat}}{\operatorname{isZero} t : \operatorname{Bool}}$ if true then t else $t' \mapsto t$ if false then t else $\overline{t' \mapsto t'}$ $t \mapsto t_1$ if *t* then *t'* else $t'' \mapsto$ if t_1 then *t'* else t''isZero (num 0) \mapsto true $t \mapsto t'$ isZero (num (1 + n)) \mapsto true isZero $t \mapsto$ isZero t'Conversion is the reflexive, transitive, symmetric closure of $- \mapsto -$.

What can you do on the high level?

We described the syntax of (a subset of) Agda using this technique and wrote a total interpreter for it. We also wrote compilers:

- Closure conversion: towards machine code
- Compile types to setoids: add function extensionality to Agda
- Compile types to reflexive graphs: add parametricity to Agda
- Future: extending a programming language with new principles
- Future: static analysis

You need to respect equalities. You can't print terms, only normal forms.

Why is it good? (i) less boilerplate. (ii) guides you on the path.

Challenges

These are very general notions of algebras, not well studied. We started describing them, they are called QIITs (next week POPL, Lisbon). You need a good metatheory (logic) to reason about them, i.e. type theory.