Type theory in type theory
using

quotient inductive types

Ambrus Kaposi
(joint work with Thorsten Altenkirch)

University of Nottingham

Theoretical CS Seminar, Birmingham
26 February 2016



Goal

@ To represent the syntax of type theory inside type
theory

o Why?

» Study the metatheory in a nice language

» Template type theory

2/27



Structure

@ Simple type theory

© Dependent type theory

© Standard model

@ Logical predicate interpretation

© Presheaf models, normalisation by evaluation

@ The future

3/27



Expressing the judgements of type theory

=t : A
will be formalised as

t: TmIl A

(We have a typed presentation, no preterms)

4/27



Simple type theory with preterms

x = zero | sucx

t c=x | lamt | apptt
Ai=1 | A=A
[=e | T, A

We define the relations , and F.

[, x: A
[LBF,sucx: A

MAF, zero: A

(Fy x:A MAFt:B [Ft:A—=B TFu:A
[Fx:A Thklamt:A— B [Fapptu:B

5/27



Simple type theory in idealised Agda (i)

data Ty
L
=

data Var
zero
suc

data Tm
var
lam

app

. Set where

c Ty

= iy = Ty = Ty
data Con :
: Con

: Con — Ty — Con

: Con — Ty — Set where

: Var (T, A) A

: VarT A — Var (I, B) A

: Con — Ty — Set where

:VarTA = TmT A

: Tm(T,A)B — TmT (A= B)

: TmIF(A=B) - TmlTA — TmTIB

Set where

6/27



Simple type theory in Agda (ii)
@ In addition, we need substitutions:
Tms : Con — Con — Set

[]:TmTA = TmsAT - TmAA

@ Now we can define a conversion relation:
7 TmlTA —- TmlA — Set
eg. app (lamt)u~t[id, u]
@ The intended syntax is a quotient:

TmlFA / ~

7/27



The syntax of dependent type theory (i)

@ Types depend on contexts

@ Substitutions are mentioned in the application rule:

app : ImT (MAB) — (a: TmTA)
— Tml(B[a])

@ We need an inductive-inductive definition:

data Con : Set

data Ty : Con — Set

data Tms : Con — Con — Set
dataTm : (I' : Con) — Tyl — Set

8/27



The syntax of dependent type theory (ii)

@ In addition, there is a coercion rule for terms:

[FA~B [Ft:A

[—t:B

@ This forces us to define conversion relations mutually:

data Con
data Ty

data Tms
data Tm

data “Con
data “Ty
data "Tms
data "Tm

. Set

- Con — Set

: Con — Con — Set

: (F: Con) — Tyl — Set

: Con — Con — Set

Tyl — Tyl — Set

- Tms AT — Tms AT — Set
: TmITA — Tml A — Set

9/27



(1) Contexts:
r+ r’HA:U
C-ext

— C-empt
T emPY Fx:AF
(2) Terms:
rFA:U rke:A reEB:U e oy
Tx:AFx:A FTx:BFt:A Y Truiu
r’FA:U F.x:A)—B:UnF Fx:AFt: B IrFf:I_I(X:A)AB lr-a:A
FFMN(x:A).B:U T TF At N(x:A)B M+ fa:Blx 3] Mn-E
Fr=t: A

Fr~AF ITHFA~B:U
AFt:B

t-coe

(3) Conversion for contexts:

re

P

C-eq-refl % C-eg-sym L~ Ar|_~ @AFN or C-eq-trans
r~AF r}_ANB:UC—eXt—con
Tx:A~Ax:BF &

(4) Conversion for terms:
r-t:A FrFu~v:A FrFu~v:A TFv~w: A
—————— t-eq-refl ——— t-eg-sym t-eq-trans
rMt~t:A rN-veu:A rNru~w:A

r~AF THFA~B:U TFu~vVv:A r’FA~A:U rx:AFB~B':U

t-eq-coe M-F-cong
At-u~v:B FEN(x:A).B~MN(x:A)B :U
Irx:AFt~t :B Ffo’:I'I(X:A).B ra~a:A
S M-l-cong M-E-cong
MEAx.t~Ax.t’' 1 N(x: A).B F-fa~f'a :B[x~ a
= f:MN(x:A).B
M-n

I'x:AFt:B n-8
I (Ax.t)a~ t[x — a] : B[x — a] T Hf~(Oxfx):N(x:A).B 10/ 27




Lots of boilerplate

@ The 7X  relations are equivalence relations

@ Coercion rules
@ Congruence rules

@ We need to work with setoids

11/27



The identity type =

e Equality (the identity type) is an equivalence relation
@ We can coerce between equal types
@ Equality is a congruence

@ What about the extra equalities (eg. 3, n for )7

12/27



Higher inductive types

@ An idea from homotopy type theory:
constructors for equalities.
@ Example:

data | : Set where
Zero s
one s

segment I Zero = one

13/27



Higher inductive types

@ An idea from homotopy type theory:

constructors for equalities.

@ Example:
data | . Set where
zero o
one o
segment : zero = one
Recl :  (IM: Set)
(zero - M)
(oneM . M)
(segment™ : zeroM =

— ] - M

oneM)

13/27



Quotient inductive types (QITs)

@ A higher inductive type which is truncated to an h-set.

@ They are not the same as quotient types: equality
constructors are defined at the same time

@ QITs can be simulated in Agda

14 /27



The syntax of dependent type theory (iii)

@ We defined the syntax of a basic type theory as a
quotient inductive inductive type (with 1 and an
uninterpreted family of types U, El)

@ We don't need to state the equivalence relation,
coercion, congruence laws anymore

@ We collect the arguments of the recursor into a record:

record Model : Set where
field Con™ : Set
™M Con™ — Set ...
@ which is the type of algebras for the QIT
= the type of models of type theory, close to CwF.
Initiality is given by the recursor

15/27



: Con [id] :A[d] =

—,— :(F:Con) - Tyl — Con 00 :Alellv] = Alo o v]
U] :Uls]=U
—[-] :TyA —Tmsl A — Tyl EI] : (El1A)[o] = El (up.Alo])
u : Tyl Nl :(NAB)[o] = N(A[0]) (Blo?])
El :TmlU — Tyl
n (A TylN) =Ty (M,A) — Tyl ido :idoo=o
oid :ocoid=c
id :TmslT oo :(cov)od=oco(rod)
—0-:Tms©OA - Tms© — Tms A en {o:Tmsl} so=c¢
€ :Tmsl - mpB m(o,t) =0
—— (c:TmsT A) > TmTl Alg] = TmsT (A,A) 7n :(mio,mo)=0c
m TmsT(AA) —» TmsT A 0 (o t)ov=(oov), (gp«tlv])
-[-] :TmAA—= (o:Tms[A) —» TmT Alo] m2f ma(o,t) ="t
w2 (o :TmsT (A, A)) = TmT A[m o] Nng :app(lamt)=t
lam :Tm(I,A)B — TmTl (MAB) My :lam(appt) =t
app :TmIM(MNAB)— Tm(l,A)B lam[] : (lam t)[¢] =" lam (t[¢""])

16 /27



Standard model

@ A sanity check

@ Every syntactic construct is interpreted as the
corresponding metatheoretic construction.

ConM = Set
M ] = [I] — Set
n" [Al[Bly = (x: [Alv) — [Bl (v %)

lam™ [t] v = Ax = [t] (v, x)

17 /27



Logical predicate interpretation (i)

@ Unary parametricity says that terms respect logical
predicates. Example:

A:Ux At A

@ For any predicate on A, if x respects it, so will t.
e Given a type B and u : B, we define BM x := (x = u).
0o A:=B,AM = BM x = u,xM := refl

o Now we get AMt = BM¢t = (t = u).

18/27



Logical predicate interpretation (ii)

@ Bernardy-Jansson-Paterson: Parametricity and
Dependent Types, 2012

@ A type is interpreted as a logical predicate over that
type

[ valid A : Set
I P valid FrP-AP : A — Set

@ A term is interpreted as a proof that it satisfies the

predicate
[t : A

FPEtP o (AP)t

19/27



Logical predicate interpretation (iii)

An interpretation from the syntax into the syntax:

.P = @

(r,x:A)P > x:A xM: APx

uP = AA — (A = U)

(x:A) = B)P = Xf = ((x: A)(M: APX)
— BP(fx))

(Ax — t)P = AxoxM — tP

(tu)P = tPu(uP)

x P = xM

These equations are all typed. Template type theory:
automated derivation of free theorems

20 /27



Normalisation

TmlA
completeness T norm | ﬁ T =7 M stability

dataNe : (I': Con) — Tyl — Set

var  :Var[T A— Nel A

app :Nel'(MAB) — (v:NfTl'A) — Nel (B["v7])
dataNf : (I : Con) — Tyl — Set

neuU : NeT U — Nfl'U

neuEl : NeT (EI A) — NfT (El A)
lam :Nf(I',A)B — Nfl'(MAB)

21 /27



Presheaf model

@ Proof relevant version of Kripke model: category
instead of poset

@ Given a category C

@ Contexts are presheaves over C: for every object of C
we have a set and for morphisms we get maps between
the sets

@ Types are families of presheaves, terms are sections

@ We need to give interpretations to the base type

22 /27



NBE for simple type theory (i)

@ Presheaf model over the category of renamings RENP

» Objects are contexts

» Morphisms are renamings (lists of variables)
@ The base type e at I is interpreted as Ne [ @
@ We denote the interpretation [-]
@ We define quote and unquote mutually:
ua: NEa—= [A] da : [A] = NF4
norma (t: TmT A) := qa ([t] idr)

23 /27



NBE for simple type theory (ii)
@ Presheaf model over REN®P, base type @ is NE e
@ For completeness, we need a logical relation

» metatheoretic
Kripke (base category RENP)
binary

v

v

v

proof-irrelevant
relation at e is equality

v

NEs — 2 ¥ (TMa x [A]) Ra —2— NF,
A Jproj A

TMp

24 /27



NBE for type theory

@ No need for presheaf model
@ Instead we have a logical predicate

» metatheoretic
Kripke (base category RENP)
unary

v

v

v

proof-relevant
predicate at @ At . X (n : Nel e).n = t

v

u aqa
NEp — = ¥ TMp AP NFa
T Jproj r_7
TM,4

25 /27



Further work

@ We internalized a very basic type theory, this can be
extended easily with universes and inductive types.
How to do it a nice categorical way?

@ We used axioms (quotient inductive types, functional
extensionality) in our metatheory. This can be solved
by cubical type theory.

@ Still lots of boilerplate equality reasoning. Solution:
informally extensional type theory, formally cubical
type theory?

@ If we work within HoTT, we can only eliminate into
h-sets. Hence, the standard model doesn't work as

described.

26 /27



Template type theory

@ Given a model of type theory, together with new
constants in that model

@ We can interpret code that uses the new constants
inside the model

@ The code can use all the conveniences such as implicit
arguments, pattern matching etc.

@ This way we can justify extensions of type theory:

» guarded type theory

» local state monad

» parametricity

» homotopy type theory

27 /27



	Simple type theory
	Dependent type theory
	Standard model
	Logical predicate interpretation
	Presheaf models, normalisation by evaluation
	The future

