Type Theory in Type Theory using Quotient Inductive Types™
Thorsten Altenkirch and Ambrus Kaposi

School for Computer Science, University of Nottingham, United Kingdom
{txa, auk}@cs.nott.ac.uk

Abstract

We present an internal formalisation of a type theory with dependent types in Type Theory using a special case of higher inductive types from Homotopy Type Theory

which we call quotient inductive types (QITs). Our formalisation of type theory avoids referring to preterms or a typability relation but defines directly well typed objects

by an inductive definition. We use the elimination principle to define the set-theoretic and logical predicate interpretation. The work has been formalized using the Agda

system extended with QITs using postulates.

Quotient Inductive Types (QITs)

QITs are a special case of Higher Inductive Types in a strict type theory where all
higher path spaces are trivial. They allow the definition of usual constructors and
equality constructors at the same time. We can simulate them in Agda by
postulating the equality constructors and defining the eliminator. An example is
the type of infinitely branching trees where the actual order of subtrees doesn't
matter. The definition below is not the same as quotienting infinite branching
trees because we were not able to lift the node constructor to the quotient.

data T : Set where

leat T

node @ (N — T) — T
postulate

perm (g N = T)(f: N - N) — islsof
— node g = node (g o f)

module ElimT

(™M = T — Set)
(lean T leaf)
(node'v| {f: N - T} (fM (n: N) — T (fn))

s T (node f))
(perm™ = {g : N — T} (" : (n
(f : N — N) (p : islsof)
— nodeM g" =[ap T™ (perm g f p) |= node™ (" o))

. N) — T (gn))

where

Elim : (£t : T) — TV

Elim leaf = leaf™

Elim (node f) = nodeM (An — Elim (fn))

Results
@ We have for the first time presented a workable internal syntax of Type Theory

which only features typed objects.
@ We implemented the following models:
Standard model (metacircular interpretation)
Logical predicate interpretation (Bernardy-Jansson-Paterson, 2012)
Presheaf model
In preparation: Normalisation by Evaluation

Template Type Theory

@ Internalising type theory opens the possibility of template type theory. An
interpretation of type theory can be given as an algebra for the syntax and the
interpretation of new constants in this algebra. We can then interpret code
using these new principles by interpreting it in the given algebra. The new code
can use all the conveniences of the host system such as implicit arguments and
definable syntactic extensions.

@ Some possible applications:

Using presheaf models to justity guarded type theory.

Modelling the local state monad (Haskell's STM monad)

Computational explanation of Homotopy Type Theory by the cubical set
model

Derivation of parametricity results using the logical predicate interpretation

Generic programming

* Supported by EPSRC grant EP/M016951/1.

Syntax of Type Theory

The syntax is presented as a Quotient Inductive Inductive Type. Signature of the
types representing the syntax:

data Con : Set

data Ty : Con — Set
data Tms : Con — Con — Set
data Tm VI — Tyl — Set

Constructors for contexts, types, substitutions and terms:

data Con where

® . Con

. (" Con) —» Tyl — Con
data Ty where

[T Ty A — Tmsl A — Tyl

[(A Ty (B : Ty (M, A) = Tyl
U Ty [
| (A TmlTU) — Tyl
data Tms where
€ - Tms [e

(0 : TmsT A) — TmT (A[O]T) — Tmsl (A, A)
id c Tms [T

o TmsAY = Tmsl A — Tmsl X

T : Tms T (A, A) = Tms A
data Tm where

[t TmAA — (0 : TmsT A) — Tm T (A[d]T)

0w (0 : TmsT (A, A) — TmT (A7 d]T)

app : Im[(IMAB) — Tm (I, A)B

lam : Tm (I, A)B — Tm I (M1 AB)

Equality constructors for types, substitutions and terms:

postulate - Ty

[d]T : A[d]T = A

T :A;(S]T[O]TEA[(SO(I]T

Ul :U[8]T = U

Ell : EIA[O]T = El(coe (Tml'= U[]) (A]t))

T (0 TmsT A)(A: TyA) — Tms (I, A[0]T) (A, A)
0 T A = (0omid), coe (Tml'= [J[IT) (72 id)

] : (MAB)[J]T = N(A[]T)(B[d T A]T)

postulate - Tms
dl :idod = 0
idr :doid = 6
ass : (0o0d)ov = oo (dov)
o :(0,t)oo = (6doag),coe(Tml= [T) (t] o]t)
B :m (0. t) =

™ (M d,md) = 0
en :{oc:Tmsle} = o = ¢
postulate - Tm
idlt - t[idt=[Tml[= [d]T]=t
it : t[d)[oct=[Tml[= [J[T]|=t[do00o]t
mf m (0, a)=[TmlI= (ap ([|TA) mpPB)|=a
M5 : app (lamt) = t
My lam (app t) t
am[] @ (lamt) [0t =[TmlI= N]]]=lam (t[6 T At)

