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1 Introduction

Computer scientists use a multitude of ways for ensuring program correctness:
testing programs with different inputs and rejecting them if they do not return
the expected output; monitoring the behaviour of the program during runtime;
modelling the program behaviour and (exhaustively) checking that the model
takes the correct steps in all states of the world; rejecting invalid programs ac-
cording to a specification in a type system; (formally) proving programs correct
according to a semantics of the programming language.

Type systems are popular among these methods because they easily fit into
the program development process by building a type checker into the compiler.
The type of a program can be viewed as a lightweight specification, the valida-
tion of which is ensured automatically by the compiler.

If the type system is not expressive enough it prohibits abstraction: in a
simply typed language, one needs to define a separate length function for lists
of integers, for lists of booleans, etc. The type systems of state of the art
functional programming languages Haskell [55] and ML [51] are built on the
polymorphic lambda calculus System F [28] which allows the length function
to be written once and for all for all list types. Haskell’s type system evolved
naturally during the years and now it is able to express the types of ordered
lists or numbers less than a given number [40], coming close to being able to
express any possible specification: a dependent type system.

Dependent type theories have been proposed as the foundations of math-
ematics by viewing types as theorems and terms of a given type as proofs of
the particular theorem. They have the expressivity needed for doing mathe-
matics, and since all of our specifications are expressed in mathematics, they
are the ultimate candidates for a type system. However, the exact choice of
which dependent type theory to use is not clear. One candidate is Martin-Löf’s
type theory (MLTT) [43]. The programming languages Agda [53] and Coq [46]
are two implementations of variants of this type theory. However, they lack
the justification of some informal practices in mathematics such as considering
point-wise equal functions equal or isomorphic objects interchangeable. Obser-
vational Type Theory [5] takes one step forward by identifying point-wise equal
functions. Homotopy type theory [58] is a more recent candidate which validates
all of these practices but lacks a full computational interpretation which pre-
vents us from using it as a programming language. My aim is to help developing
this computational interpretation.

1.1 Structure

In what follows, in section 2.1 we present Martin-Löf type theory informally as
mathematical foundations in which all later definitions should be understood.
I am interested in formalizing type theory inside type theory, this is why I
introduce the syntax in a low-level way (e.g. explicit substitutions, Universes à
la Tarski) which is more convenient to formalise. At the same time, we explain
a higher level notation which can be used later when we use type theory as a
metatheory. In section 2.2 we introduce some basic notions of category theory
to be used as a language, then we present the additional rules of homotopy type
theory (section 2.3). A way to study type theories is looking at models — in
section 3 we define a categorical notion of model and then start spelling out
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Thierry Coquand’s Kan semisimplicial set model which validates the additional
rules of homotopy type theory. I conclude with further plans and a section
about other topics that I studied during my first year (section 5).

I make no claims of originality in this text.

2 Technical background

2.1 Martin-Löf Type Theory

Type theory is a formal system enabling the derivation of certain kinds of judg-
ments. To define a type theory, one needs to list the kinds of judgments together
with their syntax and list the derivation rules one could use to build derivation
trees (proof trees). The root of a derivation tree is the judgment which was
derived by the tree, while the leaves are axioms (derivation rules having no hy-
potheses). One derivation tree represents a proof of the theorem represented
by the judgment at the root. All proofs in informal (constructive) mathematics
should be representable by a derivation tree in type theory. Our presentation
also tries to give a minimal set of rules which could serve as the core of a
programming language / proof assistant based on type theory.

2.1.1 Intuition

Before listing the derivation rules in Martin Löf Type Theory, I give some intu-
ition explaining the syntax in 4 steps.

1. (Contexts.) To represent implication, we need a way to express its intro-
duction rule:

[A]
B

A→ B
→ -intro, discharging assumption [A]

The [A] in the top means that the usage of A is allowed in the proof of
B, however A is only in scope in this proof of B. By discharging it when
deriving A → B, we cannot make use of A anymore (A is bound at the
point of discharging it and is only in scope above it). We could extend the
definition of proof tree to that of binding tree (see [30], chapter 1.2), but
instead we introduce contexts: each judgment begins with a context which
lists the non-discharged assumptions that are currently usable. The above
introduction rule is formulated by removing the appropriate assumption
from the context:

Γ.A ` B
Γ ` A→ B

→ -intro

If there is no assumption we write () ` A where () represents the empty
context.

2. (Terms and variable binding.)

Type theory provides a way for representing proof trees inside judgments.
It defines a language of terms, each term representing one proof tree. The
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judgment Γ ` t : T means that assuming Γ, the term t represents a proof
tree with T at its root. When listing the rules of type theory we always
define term formers representing the proof step of applying the particular
rule. On one hand this is a concise notation for proofs (as used in proof
assistants), on the other hand terms can be viewed as programs. E.g.
a term of type A → B is a program which takes an input of type A
and outputs something of type B. Reconstructing the proof tree from a
term is called type inference. In a programming language based on type
theory such as Agda, terms usually do not include all the information
needed to reconstruct the proof tree, but they need to be given together
with their types, and from the type and the term the proof tree can be
reconstructed (this is called type checking). In our informal presentation
we also omit much information from the notation for terms in order to
make the notation more readable.

For representing the→ -intro rule as a term, we introduce the last assump-
tion of the context inside the term by the binder λ. It binds a variable
representing the assumption within the term. The term represents the
part of the proof tree above the use of the → -intro rule where the as-
sumption can be used, this is the scope of the variable. There are two
ways of expressing variable binding within a linear syntax:

• Introducing a new, previously unused variable name at each λ ab-
straction. In λx.λy.x, the x refers to the outer binding. If viewed as
a program, this term represents the constant function.

• Instead of introducing variables by names, use natural numbers to
refer to the binders (de Bruijn indexing). 0 refers to the innermost
binder, 1 refers to the next binder etc. The previous example becomes
becomes λ.λ.1.

In the latter case one does not need to care about α-renaming (renaming
of variables) to define an equality on terms.

It is useful to generalize the above two ways to reference assumptions
within the context (terms having such references are called open terms):

• give each assumption a unique name different from the bound names
in the term, e.g. z : A, z′ : B, z′′ : C ` t : D where t can contain
variable names z, z′ or z′′. If one of these variables is bound within
t then it shadows the binding by the context.

• refer to the assumptions by natural numbers n, n + 1, n + 2, etc,
n being the number of binders under which the reference is placed
inside the term. n would refer to the rightmost assumption, e.g.
A.B.C ` λ.2 : B means z : A, z′ : B, z′′ : C ` λx.z′ : B.

3. (Machinery for substitution.) We would like to equate certain proof trees
representing essentially the same proofs. In particular, cut elimination
should be true, i.e. introducing an implication A → B and then imme-
diately eliminating it by modus ponens by providing an A should be the
same as substituting all the occurrences of A in the proof of A → B by
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the proof of A provided. When representing this by terms instead of trees
we get the following rule1:

Γ, x : A ` t : B Γ ` a : A

Γ ` app(λx.t, a) ≡ t[a/x] : B

app represents the usage of modus ponens, t[a/x] is a meta-notation for
the term t where every occurrence of x is replaced by a. Another way
of representing substitution is building it into our theory as a primitive
notion i.e. having a kind of judgment σ : ∆ → Γ which expresses that σ
is a substitution from one context to the other. If Γ = A1 . . . An, then σ
is a list of terms t1 : A1, . . . , tn : An and these terms have free variables
in ∆. This kind of syntactic presentation is called explicit substitution.
Applying a substitution σ : ∆ → Γ on a term Γ ` t : A results in a term
∆ ` tσ : A.

Given a special substitution p : Γ.A → Γ and a special term Γ.A ` q : A,
we can represent all variables by the de Bruijn method: 0 is represented
by q, 1 is represented by qp, 2 is represented by qpp etc. If Γ ` a : A and
Γ.A ` t : B then instead of t[a/x]2 we write t(1, a) where (1, a) : Γ→ Γ.A
is a substitution built up from the identity substitution 1 : Γ→ Γ and the
term a.

4. (Dependent types.)

In dependent type theories types can depend on terms, terms and types
are in the same syntactic category3. This adds some twists to the above
explanations. A type now depends on a context and we use the notation
Γ ` A meaning that the type A might include free variables in Γ. However
it is the same notation as previously where Γ ` A meant A is derivable
from the assumptions in Γ (and later we have introduced a proof term
t for describing such a derivation: Γ ` t : A), the meaning is different:
we have no proof terms in the typing judgements for types. With this in
mind, A1 . . . An being a context entails the following judgments:

() ` A1

A1 ` A2

A1.A2 ` A3

. . .

A1 . . . An−1 ` An

That is, a type in a context can include variables in the preceding part of
the context. A substitution σ : Γ→ A1 . . . An can be thought of as a list

1The relationship between cut elimination and β-reduction is subtle and is described in
detail in [9].

2x is not mentioned here as a free variable in t, so t[a/x] does not even make sense.
3In our presentation, they are in different syntactic category, however, with a universe, one

can give codes for types as terms, see section 2.1.8
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of terms

Γ ` t1 : A1

Γ ` t2 : A2(1, t1)

Γ ` t3 : A3((1, t1), t2)

. . .

Γ ` tn : An(. . . ((1, t1), t2), . . . ), tn−1)

A type B which depends on a context A written as x : A ` B can be
viewed as a family of types indexed over A. That is, if a0 : A, then
B[a0/x] is a member of the family (at index a0). If a0 : A, then B[a1/x]
is another member (at index a1).

We present two notations for the syntax of type theory, one high level nota-
tion for usage as a metatheory and one low level to be formalised.

The meta level presentation uses names for variables, the usual f(g) notation
for function application, pattern matching or just informal language for defining
functions. We will use this as the notation for the metalanguage to distinguish
it from the notation for the object theory which we will try to formalise. We
only need this because the object theory will be the same as the metatheory
(with some extensions).

Our main emphasis is on the lower level presentation which uses explicit
substitutions for variable bindings. De Bruijn indices are simulated with the
special term q (corresponding to 0) and multiple applications of the substitution
p (corresponding to the successor function). Most of the time we follow the
notation used by Thierry Coquand in [10]. Function application uses the app
construct, universes are given by codes reflected in types by El, eliminators
are used instead of pattern matching (for a while), and term formers are not
automatically curried functions but have fixed arities. Sometimes we repeat
definitions with variable names just for readability.

2.1.2 Kinds of judgments

We have 8 kinds of judgments:

Γ ` Γ is a valid context
σ : ∆→ Γ σ is a substitution from context ∆ to Γ
Γ ` A A is a type in context Γ
Γ ` t : A t is a term of type A in context Γ

The next four kinds of judgments express equality for the above constructs:
contexts, substitutions, types and terms.

` Γ ≡ ∆ contexts Γ and ∆ are definitionally equal
σ ≡ δ : ∆→ Γ substitutions σ and δ are definitionally equal
Γ ` A ≡ B types A and B in context Γ are definitionally equal
Γ ` u ≡ v : A terms u and v of type A in context Γ are definitionally equal

Usually we will omit the context and type from the equality judgments and
just write equations like t ≡ r.
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The equality ≡ is called convertibility or judgmental equality. In intensional
Martin-Löf Type Theory, this judgmental equality expresses definitional equal-
ity: an equality relation which is defined by abbreviatory definitions (we use the
:≡ symbol for these) and by the rule that substituting equals for equals should
be equal.

Reasoning inside type theory means defining terms by the term introduction
rules given below. From within type theory, we only have access to term formers
(and substitutions, which we use instead of variables), and we cannot access
contexts, types and definitional equality. The terms that we define by using :≡
can be viewed as abbreviations.

We use the following notational conventions:

Γ,∆,Θ,Ω contexts
σ, δ, ν, ρ substitutions
A,B,C types
u, v, w, t, a, b, c terms

In the meta level notation we omit substitutions and use variable names for
referring to parts of the context.

2.1.3 Rules for context formation and substitution

The category of contexts (see section 2.2):

Γ `
1 : Γ→ Γ

id
σ : ∆→ Γ δ : Θ→ ∆

σδ : Θ→ Γ
composition

1σ ≡ σ σ1 ≡ σ (σδ)ν ≡ σ(δν)

Formation of new contexts:

() `
empty Γ ` Γ ` A

Γ.A ` comprehension

Formation of new substitutions and terms:

Γ ` A
p : Γ.A→ Γ

Γ ` A
Γ.A ` q : Ap

σ : ∆→ Γ Γ ` A ∆ ` u : Aσ
(σ, u) : ∆→ Γ.A

p(σ, u) ≡ σ q(σ, u) ≡ u 1 ≡ (p, q) (σ, u)δ ≡ (σδ, uδ)

Substitution of types and terms:

Γ ` A σ : ∆→ Γ
∆ ` Aσ

Γ ` t : A σ : ∆→ Γ
∆ ` tσ : Aσ

(Aσ)δ ≡ A(σδ) A1 ≡ A (aσ)δ ≡ a(σδ) a1 ≡ a

We will use the notation [u] ≡ (1, u), [u, v] ≡ ((1, u), v) etc. With this notation,
if we have a type family B indexed over a type A expressed as Γ.A ` B, we can
write Γ ` B[a] for the member of the family at index a if Γ ` a : A. Similarly for
a family indexed over two types which might depend on each other: if Γ.A.B ` C
and Γ ` a : A and Γ ` b : B[a], then Γ ` C[a, b].

We write pn instead of composing p n times to shorten the notation for
weakening substitutions. E.g.p4 stands for pppp.
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2.1.4 Congruence rules for definitional equality

Definitional equality is an equivalence relation, hence we have rules for express-
ing the reflexivity, symmetry and transitivity of · ≡ ·, for contexts, substitutions,
types and terms, respectively. We won’t spell these out because they are com-
pletely straightforward.

We also need rules expressing that definitionally equal contexts, substitu-
tions, types and terms can be replaced in all situations. The following coercion
rules allow equal contexts and types to be replaced with each other in any
judgment.

Γ ≡ ∆ Γ ` A
∆ ` A

Γ ≡ ∆ Θ ≡ Ω σ : Γ→ Θ
σ : ∆→ Ω

Γ ≡ ∆ Γ ` A ≡ B Γ ` t : A
∆ ` t : B

We need additional congruence rules which express that the different ways of
forming contexts, substitutions, types and terms all respect definitional equality.

For contexts, we have the following congruence rule:

Γ ≡ ∆ Γ ` A ≡ B Γ ` A
Γ.A ≡ ∆.B

Congruence rules for substitutions:

σ ≡ ν δ ≡ ρ
σδ ≡ νρ

σ ≡ δ Γ ` u ≡ v : Aσ
(σ, u) ≡ (δ, v)

Congruence rule for types:

Γ : A ≡ B σ : ∆→ Γ σ ≡ δ
∆ ` Aσ ≡ Bδ

Congruence rule for terms:

Γ ` u ≡ v : A σ : ∆→ Γ σ ≡ δ
∆ ` uσ ≡ vδ : Aσ

Note that these rules depend on each other, e.g. in the last rule, the judgment
∆ ` uσ ≡ vδ : Aσ does not seem to be valid, since uσ and uδ have different
types, however, by the congruence rule for types, we know that the type of uδ
is Aδ ≡ Aσ.

When introducing new type and term formers (as for function types in the
next section), they should come with rules expressing their behaviour with re-
gards definitional equality.

2.1.5 Rules for the function type

Rules in type theory appear following a common pattern: type formation rule,
introduction rule, elimination rule, computation (β) and uniqueness (η) rules.
The formation and introduction rules provide constructors for the type and
terms of that type. The elimination rule provides an eliminator or destructor.
Constructors and eliminators need to obey additional congruence rules express-
ing that definitionally equal types and terms can be replaced in every position.
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In our presentation with explicit substitutions, we need to express how substi-
tutions interact with term and type formers as well.

The function type represents implication, and more generally, universal
quantification.

Γ ` A Γ.A ` B
Γ ` ΠAB

Π-form

Γ.A ` b : B
Γ ` λb : ΠAB

Π-intro
Γ ` w : ΠAB Γ ` a : A

Γ ` app(w, a) : B[a]
Π-elim

Interaction with substitutions (the ξ rule below also falls into this category):

(ΠAB)σ ≡ ΠAσ B(σp, q) app(w, u)δ ≡ app(wδ, uδ)

σ : ∆ → Γ, but Γ.A ` B, this is why we need to use the substitution (σp, q),
where σp : ∆.Aσ → Γ, hence (σp, q) : ∆.Aσ → Γ.A.

We express the β (computation) rule as follows, we call it βσ:

app((λb)σ, u) ≡ b(σ, u)

The congruence rules are the following (omitting the details of contexts, types):

A ≡ A′ B ≡ B′
ΠAB ≡ ΠA′ B′

t ≡ t′
λt ≡ λt′

This defines a weak Π. If we additionally have the following rules, we get a
strong Π:

Γ.A ` t : B
(λt)σ ≡ λ(t(σp, q))

ξ Γ ` t : ΠAB
Γ ` t ≡ λ(app(tp, q))

η (uniqueness)

The ξ rule expresses substitution under λ and it says that the indices should be
shifted by one under the binder.

In a strong theory, the usual β rule app(λb, u) ≡ b(1, u) is equivalent to βσ.
β can be derived from βσ by choosing σ :≡ 1, the other direction follows by
equational reasoning:

app((λb)σ, u)

≡ app(λ(b(σp, q)), u) ξ

≡ b(σp, q)(1, u) β

≡ b(σp(1, u), q(1, u))

≡ b(σ, u)

In what follows, we assume a weak type theory.
We use the abbreviation A→ B for the type ΠABp. → is right-associative,

that is, A→ B → C means A→ (B → C). The scope of a λ extends as much as
possible to the right hand side, eg λλapp(w, λv) means λ(λ(app(w, (λv)))). We
abbreviate nested applications like this: app(f, x, y) means app(app(f, x), y).
For infix operators such as · + · : N → N → N we write x + y instead of
app(· + ·, x, y). The dots show the positions of the arguments. For conciseness
sometimes we omit some arguments of a function if they are clear from the
context. We mark such implicit arguments by putting the type of the argument
in subscript such as in id : Π U (El(q)→ El(q)). When defining such a function,
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we use subscript lambdas: id :≡ λ λq. When calling the function, the first
parameter (which in our case has type U) can be omitted: app(id, a) : El(Â)
if a : El(Â). If we want to specify it nevertheless, we give it in subscript:
app(id,Â ) : El(Â)→ El(Â). The meaning of the id function will become clear in
section 2.1.8, for now it is enough to know that U is a type and El(t) is a type
given t : U. Implicit arguments only make a difference when using app to apply
the function, e.g. the subscript lambdas are still referrable by substitutions etc.

Π is a binder, in Π A B, an argument of type A is bound and we can refer
to it by q inside B. When using nested bindings, qpn refers to the nth binder
(counting starts with 0). For example, in Π A

(
Π B (Π C D(qp))

)
, qp refers to

something of type B being bound by the second Π, while in Π A
(
Π B (C →

D(qp))
)
, qp refers to the A being bound (because→ is not a binder, C → D(qp)

means Π C (D(qp)p)4).
The meta level notation for function types is (a : A) → (B[a]) instead of

Π A B, λx.λy.x instead of λλqp and f(a) instead of app(f, a). Sometimes we
use notation with variable names for readability like in

∏
a:A

B[a].

2.1.6 Rules for propositional equality

We introduce the type expressing equality inside the theory. It is called proposi-
tional equality to distinguish from the definitional equality. Definitional equality
is the part of equality which can be decided (see section 2.1.12), so we build it
into the system as a judgment type and rely on it when we are reasoning inside
the system. We can’t express definitional equality within the theory: if we do
mathematics in type theory, definitional equality is a “premathematical” notion.
Propositional equality is the equality which needs a proof done (programmed)
by hand. The type expressing propositional equality is also called the identity
type.

Γ ` A Γ ` u : A Γ ` v : A
Γ ` u =A v

= -form
Γ ` A Γ ` a : A
Γ ` refla : a =A a

= -intro

Γ.A.Ap.qp =App q ` C Γ.A ` t : C[q, reflq] Γ ` u, v : A Γ ` p : u =A v

Γ ` J(t, u, v, p) : C[u, v, p]
= -elim

Γ.A.Ap.qp =App q ` C Γ.A ` t : C[q, reflq] Γ ` a : A

Γ ` J(t, a, a, refla) ≡ t[a] : C[a, a, refla]
= -β

Without explicit substitutions, the context Γ.A.Ap.qp =App q is written as
Γ, x : A, y : A, z : x =A y.

(u =A v)σ ≡ (uσ =Aσ vσ) (refla)σ ≡ reflaσ

(J(t, u, v, p))σ ≡ J(t(σp, q), uσ, vσ, pσ)

We have the usual congruence rules stating that if A ≡ A′, u ≡ u′ and v ≡ v′

then (u =A v) ≡ (u′ =A′ v
′) etc.

The introduction rule is called refl because it expresses reflexivity, but also
because it reflects the definitional equality inside the theory by the following

4This requires that D has the substitution law D(a)σ ≡ D(aσ).
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rule (one of the congruence rules):

u ≡ v : A
reflu : u =A v

We have the following metatheoretic results concerning the relationship between
definitional and propositional equality:

• For any Γ ` a : A, Γ ` b : A we can derive the judgement Γ ` refl :
a = b iff we can derive the judgement Γ ` a ≡ b : A (the right to left
direction follows from the congruence rule mentioned above, the other
from = -intro).

• For any () ` a : A, () ` b : A we can derive a judgement () ` p : a = b iff
we can derive the judgement () ` a ≡ b (the right to left direction follows
from congruence and = -intro, the other from canonicity: all terms in the
empty context are definitionally equal to a constructor and in this case,
refl is the only constructor, for details, see section 2.1.12).

It can be proved that =A is an equivalence relation for all A types i.e. given
a type Γ ` A we can define the following functions:

refl : ΠA (q = q)
refl :≡ λreflq

·−1 : Π A

(
Π A (qp = q→ q = qp)

)
·−1 :≡ λ λ λJ(reflq, qpp, qp, q)

· � · : Π A

(
Π A

(
qp = q→ Π A (qp = q→ qpp = q)

))
· � · :≡ λ λ λ λ λapp

(
J
(
J(refl, qp4, qp, q), qp4, qp3, qp2

)
, qp, q

)
· � · :≡ λx. λy. λp : x = y. λz. λq : y = z.app

(
J
(
J(refl, x, z, q), x, y, p

)
, z, q

)
I repeated the last definition with variable names for readability.

Given a type family Γ.A ` P , we can transport elements of this family along
equalities of A:

transportP (·, ·) : Π A

(
Π A

(
qp = q→ P [qp]→ P [q]

))
transportP (·, ·) :≡ λ λ λλapp(J(λq, qp3, qp2, qp), q)

By using universes (section 2.1.8), these functions can be defined generically
for all types in a universe (now we defined them for fixed types A and P ).

2.1.7 Rules for Sigma

The rules for the sum type (also called dependent product):

Γ ` A Γ.A ` B
Γ ` ΣAB

Σ-form
Γ ` a : A Γ ` b : B[a]

Γ ` (a, b) : ΣAB
Σ-intro

Γ.ΣAB ` P Γ.A.B ` t : P (pp, (qp, q)) Γ ` w : ΣAB

Γ ` indΣ(t, w) : P [w]
Σ-elim

Γ ` indΣ(t, (a, b)) ≡ t[a, b]
Σ-β
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(ΣAB)σ ≡ ΣAσ B(σp, q) (u, v)σ ≡ (uσ, vσ)

indΣ(t, w)σ ≡ indΣ(t(σp, q), wσ)

In the elimination rule, one can check that (pp, (qp, q)) : Γ.A.B → Γ.ΣAB and
it means that P is substituted so that its dependency on ΣAB is filled by the
pair constructed by the last two elements in the context.

We don’t assume an η rule for this type. We presented the Σ type positively.
The negative presentation would provide two eliminators, the projection func-
tions pr1 : Σ A B → A and pr2 : Π (Σ A B) (B[pr1(q)]) instead of indΣ. These
can be defined inside the theory with the help of universes, see the next section.
In the negative presentation, indΣ can only be defined if one has an (at least
propositional) η rule saying that w = (pr1(w), pr2(w)) for all w : Σ AB. In our
presentation, this (propositional) rule follows from indΣ.

We have the usual congruence rules, however we don’t spell them out here.
The meta level notation for the sum type ΣAB is (a : A)×(B[a]). The more

readable notation with variable names that we sometimes use is Σ (a : A) (B[a])
or
∑
a:A

B[a].

2.1.8 Rules for universes

A universe is a type containing other types. Universes were introduced in the
first publication of type theory This can be expressed by a type U which contains
codes representing types and a function El which maps codes to types:

Γ ` U
Γ ` Â : U

Γ ` El(Â)

Substitution rules:
Uσ ≡ U (El(Â))σ ≡ El(Âσ)

I put hat on a symbol to indicate that it is a code for a type rather than a type.
We need to add rules for expressing that the universe contains some types.

For example, the universe being closed under Π means that if we have a
type in the universe and a type family indexed over this type, then the universe
contains the dependent function space over these two types:

Γ ` Â : U Γ.El(Â) ` B̂ : U

Γ ` Π̂ Â B̂ : U
Π̂-form

Γ ` Â : U Γ.El(Â) ` b : El(B̂)

Γ ` λ : El(Π̂ Â B̂)
Π̂-intro

Γ.El(Â) ` B̂ : U Γ ` w : El(Π̂ Â B̂) Γ ` a : El(Â)

Γ ` app(w, a) : El(B̂[a])
Π̂-elim

We have overloaded the λ constructor and app destructor names.
The computation, substitution and congruence rules are the same as for

normal Π types. Also, if we remove the “El”s, hats and “: U”s from the above
three rules, we get the exact same rules as for Π. What is the difference between
a universe closed under Π and having a Π type as defined in section 2.1.5? Π̂ is
restricted in that one is only able to form functions between types residing in the
universe, while the more general Π can be used to construct functions between
types no matter which universe they inhabit. However, one cannot abstract over
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general Π types inside the theory (only metatheoretically), but it is possible to
do so with Π̂ types by the following construction: if c : Σ U (El(q) → U), then
El(Π̂ (pr1c) app(pr2c, q)) is the Π̂ type corresponding to it.

One can present type theory without a judgment type Γ ` A for types and
instead use a universe, saying Γ ` A : U (omitting the El construct). However,
what type should U itself have? The rule Γ ` U : U would make the theory
inconsistent as it is shown by the Burali-Forti paradox [26], or, using inductive
types by the Russel-paradox (see section 2.1.10). The usual solution is a se-
quence of universes embedded into each other: U0 : U1 : U2 : . . . , hence each
universe (and, as a consequence, each term) has a type, so we could omit the
judgment kind for types from the presentation. The presentation without El is
called universes à la Russel [44], the current presentation is called universes à
la Tarski. The former is considered as an informal version of the latter [54],
the latter fits together better together with the categories with families model
(section 3.1).

The hierarchy of universes is given as follows (where i is a natural number):

U ≡ U0 Û ≡ Û0 Ûi : Ui+1 El(Ûi) ≡ Ui

One could assert a cumulativity rule stating that Ûi : Uj whenever i < j. We
will only use this rule in section 2.3. The types corresponding to codes in U0

are called small types.
We write Uj for universe-polymorphic definitions if we want to stress poly-

morphism. This means that the definition should be valid for any j : N. Most of
the time when we simply write U, it would also be a valid polymorphic definition,
and we exploit this fact multiple times in section 2.3.

Universes are important for abstraction. E.g. the polymorphic identity
function (defined at the end of section 2.1.5 as an example) cannot be defined
without a universe. Using universes, we can define the projection functions for
all Σ types as follows:

pr1· : Π U (Π El(q)→U (Σ El(qp) El(app(qp, q))→ El(qp)))
pr1· :≡ λ λλindΣ(qp, q)

pr2· : Π U (Π El(q)→U Π (Σ El(qp) El(app(qp, q))) (El(app(qp, pr1q))))
pr2· :≡ λ λλindΣ(q, q)

The expected definitional equalities pr1(a, b) ≡ qp[a, b] ≡ a and pr2(a, b) ≡
q[a, b] ≡ b hold by the β rule of Σ.

Universes are the way for defining type-level functions (functions that output
a type) by defining a function which outputs a code. The above projection
functions are such examples.

The universe U being closed under Σ means the following (and the usual
computation and congruence rules):

Γ ` Â : U Γ.El(Â) ` B̂ : U

Γ ` Σ̂ Â B̂ : U
Σ̂-form

Γ ` a : El(Â) Γ ` b : El(B̂[a])

Γ ` (a, b) : El(Σ̂ Â B̂)
Σ̂-intro

Γ ` P : El(Σ̂ Â B̂)→ Uj

Γ ` f : Π El(Â) (Π El(B̂[q]) El(app(P, (qp, q))))

Γ ` w : El(Σ̂ Â B̂)

Γ ` indΣ̂(P, f, w) : El(app(P,w)) Σ̂-elim
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If the target type of P in the elimination rule is different from U (more
precisely, the index j in Uj is larger than the index of U in the hierarchy
of universes), 2̂ has so-called large elimination (small elimination is when the
codomain of P is a small type). Large elimination is required for computing a
small type from a pair: we want app(f, a, b) : U0, hence El(app(P, (qp, q))) ≡ U0,

hence app(P, (qp, q)) ≡ Û0 : U1, so j = 1.

2.1.9 Rules for finite types

The type having no inhabitants (also called bottom, ⊥):

Γ ` 0
0-form Γ ` t : 0 Γ.0 ` A[t]

Γ ` ind0(t) : A
0-elim

There is no computation rule for 0.
The type having one inhabitant (also called unit, >):

Γ ` 1
1-form

Γ ` ∗ : 1
1-intro Γ.1 ` A Γ ` u : A[∗] Γ ` t : 1

Γ ` ind1(u, t) : A[t]
1-elim

ind1(t, ∗) ≡ t
1-β

The type of booleans:

Γ ` 2
2-form

Γ ` 0 : 2
2-intro1 Γ ` 1 : 2

2-intro2

Γ.2 ` A Γ ` u : A[0] Γ ` v : A[1] Γ ` t : 2

Γ ` case(u, v, t) : A[t]
2-elim

case(u, v, 0) ≡ u
2-β1

case(u, v, 1) ≡ v
2-β2

The substitution rules are the following:

0σ ≡ 0 1σ ≡ 1 2σ ≡ 2

∗σ ≡ ∗ 1σ ≡ 1 2σ ≡ 2 case(u, v, t)σ ≡ case(uσ, vσ, tσ)

The congruence rules are as usual.
A universe U closed under 2 means the following:

Γ ` 2̂ : U Γ ` 0 : El(2̂) Γ ` 1 : El(2̂)

Γ ` P : El(2̂)→ Uj Γ ` u : El(app(P, 0)) Γ ` v : El(app(P, 1)) Γ ` t : El(2̂)

Γ ` ind2̂(P, u, v, t) : El(app(P, t))

ind2̂(P, u, v, 0) ≡ u ind2̂(P, u, v, 1) ≡ v

2̂σ ≡ 2̂ 0σ ≡ 0 1σ ≡ 1 ind2̂(P, u, v, t)σ ≡ ind2̂(Pσ, uσ, vσ, tσ)

ind2̂ allows large elimination: if j = 1, we can choose choose P to be the constant

function which returns Û i.e. P :≡ λÛ : El(2̂) → U1, and we can create a type

by case splitting on a boolean: ind2̂(λÛ, 0̂, 1̂, t) is the code for the 0-element type
if t ≡ 0, otherwise it is the code for the 1-element type.
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With the help of a universe closed under Π, Σ and 2 (where 2̂ has large
elimination), one can define the nondependent product and sum types as U →
U → U functions. I give some explanations for the definitions in the right
column.

· ×̂· : U→ U→ U nondependent product

· ×̂· :≡ λλΠ̂ 2̂ Â×̂B̂ ≡ Π̂ (t : El(2̂))

ind2̂(λU, qpp, qp, q) ind2̂(λx.U, Â, B̂, t)

(·, ·) : Π U (Π U (El(qp)→ El(q)→ El(qp×̂q))) pairing

(·, ·) :≡ λ λλ (·, ·) ≡ λÂ:U. λB̂:U.λa : El(Â).

λλind2̂( λb : El(B̂).λx : El(2̂).ind2̂(

λind2̂(λU, qp5, qp4, q), qpp, qp, q) λy.ind2̂(λz.U, Â, B̂, y), a, b, x)

pr1· : Π U (Π U (El(qp×̂p)→ El(qp))) first projection
pr1 · :≡ λ λλapp(q, 0) pr1w ≡ app(w, 0)

pr2 · : Π U (Π U (El(qp×̂p)→ El(p))) second projection
pr2 · :≡ λ λλapp(q, 1) pr2w ≡ app(w, 1)

We used large elimination for 2̂ in the definition of ·×̂· and in the inner usage of
ind2̂ in the definition of (·, ·). The β rules for the projections hold definitionally,
in the first case this is pr1(a, b) ≡ app((a, b), 1) ≡ app(λind2̂(. . . , a, b, q), 1) ≡
ind2̂(. . . , a, b, 1) ≡ a. A dependent eliminator similar to that of Σ can also be
defined however only with a propositional computation rule (and this compu-
tation rule requires function extensionality, see section 2.1.13). ·×̂· can be also
defined just as a special case of Σ̂ by ·×̂· :≡ λλΣ̂ qp λqp, in this case it has
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definitional or propositional computation rules just as Σ̂.

· +̂· : U→ U→ U nondependent sum

· +̂· :≡ λλΣ̂ 2̂ ind2̂(λU, qpp, qp, q) Â+̂B̂ ≡ Σ̂ (t : El(2̂)) ind2̂(λx.UÂ, B̂, t)

inl · : Π U (Π U (El(qp)→ El(qp+̂q))) first injection
inl · :≡ λ λλ(0, q) inlu ≡ (0, u)

inr · : Π U (Π U (El(q)→ El(qp+̂q))) second injection
inr · :≡ λ λλ(1, q) inr v ≡ (1, v)

ind+̂(·, ·, ·, ·) : ind+̂(·, ·, ·, ·) :

Π U (Π U (Π (Π El(qp+̂q) Uj) Π Â:U (Π B̂:U (Π (P : Π El(Â+̂B̂) Uj)

((Π El(qpp) El(app(qp, inl q))) ((Π (a : El(Â)) El(app(P, inl a)))

→ (Π El(qp) El(app(qp, inr q))) → (Π (b : El(B̂)) El(app(P, inr b)))

→ (Π El(qpp+̂qp) → (Π (w : El(Â+̂B̂))
El(app(qp, q)))))) El(app(P,w))))))

ind+̂(·, ·, ·, ·) :≡ λ λλλλλ ind+̂(·, ·, ·, ·) :≡ λÂ. λB̂.λP.λpa.λpb.λw.

indΣ̂(qppp, indΣ̂(P,

λλapp( λx.λu.app(

ind2̂(λΠ̂ ind2̂(λU, qp8, qp7, q) ind2̂(λy.Π̂ (v : ind2̂(λz.U, Â, B̂, y))

app(qp7, (qp, q)), app(P, (y, v)),

qp4, qp3, qp), pa, pb, x),

q), u),

q) w)

We used large elimination for 2̂ in the definition of ·+̂· and in the inner usage of
ind2̂ in the definition of ind+̂. If j 6= 0, we need large elimination for Σ̂ and for

the other induction on 2̂ in the definition of ind+̂. The β rule holds definitionally
and a propositional η rule can be proved.

If the universe is closed under the type 1 as well, we have have all finite
types: a type having exactly n elements can be defined by El(1̂+̂ . . . +̂1̂) where
1̂ appears n times.

Given a universe closed under 0, 1, 2, Π, Σ and · = · we can define the usual
logical connectives by the propositions as types principle [35]:

Prop :≡ U

¬ · :≡ λΠ̂ q 0̂

· ∧ · :≡ ·×̂·
· ∨ · :≡ ·+̂·
· ⇒ · :≡ λλΠ̂ qp qp (λP : U.λQ : U.Π̂ P (Qp))

∀(x:A)P (x) :≡ Π̂ Â P̂ where El(Â) ` P̂ : U

∃(x:A)P (x) :≡ Σ̂ Â P̂ where El(Â) ` P̂ : U

a = b :≡ a =̂ b
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2.1.10 Rules for inductive types

Inductive types are the most common data types used for programming: natural
numbers, lists, trees etc.

Simple inductive types are defined by a type formation rule and a number
of introduction rules. We illustrate these for the case of the natural numbers:

Γ ` N N-form
Γ ` 0 : N N-intro1

Γ ` n : N
Γ ` suc(n) : N

N-intro2

0 and suc are called constructors. 0 has no parameters, while suc has one
parameter of type N.

The elimination and computation rules can be derived automatically from
the formation and introduction rules. The elimination rule requires a type family
P indexed by N called motive, and an element of P [c] for each constructor c
(these are called methods according to [48]). The target t of the elimination is
the natural number we want to investigate.

Γ.N ` P Γ ` z : P [0] Γ ` s : Π (Σ N P ) P (p, suc(pr1(q))) Γ ` t : N
Γ ` indN(z, s, t) : P [t]

N-elim

The type of s looks like this with uncurried high level notation: (n : N) →
P (n)→ P (suc(n)).

indN(z, s, 0) ≡ z
N-β1

indN(z, s, suc(n)) ≡ s(n, indN(z, s, n))
N-β1

Our previous definitions of the Σ, 0, 1, 2 types followed the same pattern,
and also · × · and · + · can be reformulated as inductive types. However, we
introduced them already because we need them to make use of the following
definitions.

We can formulate the definition of an inductive type generically by the no-
tion of a container [2]. For this, we need the universe U0 to be closed under
0, 1, 2, Π, Σ, · = · (hence, we have ×̂ and +̂ as well). A container is given by
a code Ŝ : U, the code for the type of shapes and a code P̂ : El(Ŝ) → U, the
code for the type of positions depending on the shape. The shapes represent
the constructors together with their non-recursive arguments, the positions rep-
resent the recursive arguments of the particular constructor. As examples we
show how to encode the natural numbers, lists of Âs, binary trees (with L̂s at
the leafs and N̂s at the nodes) as containers. We list the constructors together
with their types and the container encodings.

0 : N Ŝ :≡ 1̂+̂1̂

suc : N→ N P̂ :≡ λind+̂(λÛ, λ0̂, λ1̂, q)

nil : ListÂ Ŝ :≡ 1̂+̂Â

cons : El(Â)→ ListÂ → ListÂ P̂ :≡ λind+̂(λÛ, λ0̂, λ1̂, q)

leaf : El(L̂)→ TreeL̂,N̂ Ŝ :≡ L̂+̂N̂

node : El(N̂)→ TreeL̂,N̂ → TreeL̂,N̂ → TreeL̂,N̂ P̂ :≡ λind+̂(λÛ, λ0̂, λ2̂, q)

We needed large elimination on +̂ for all three examples.
Inductive types given by a list of constructors can be automatically turned

into their container encodings (this requires a strictly positive base functor to

18



be calculated from the constructors, and then converting this functor to the
appropriate codes, see section 2.2).

Given codes Ŝ and P̂ , the inductive type given by them is called a W-type
and is defined as follows:

Γ ` Ŝ : U Γ ` P̂ : El(Ŝ)→ U

Γ `WŜ,P̂
W-form

Γ ` s : El(Ŝ) Γ ` f : El(app(P̂ , s))→WŜ,P̂

Γ ` sup(s, f) : WŜ,P̂

W-intro

sup is a constructor which requires a shape s (which original constructor it
resembles together with its non-recursive arguments), and a function f which for
each recursive occurrence, provides an element of the type itself. The elimination
rule needs a function g which, given a shape s, an f : El(app(P̂ , s)) → WŜ,P̂

providing the recursive arguments for each position, and a function representing
the inductive hypothesis (that is, El(app(Q, app(f, x))) for all x), states that
El(app(Q, sup(s, f))).

Γ ` Q : WŜ,P̂ → Uj

Γ ` g : Π El(Ŝ)

(
Π
(

El(app(P̂ , q))→WŜ,P̂

)((
Π El(app(P̂ , qp)) El(app(Q, app(qp, q)))

)
→ El(app(Q, sup(qp, q)))

))
Γ ` w : WŜ,P̂

indWŜ,P̂
(Q, g, w) : El(app(Q,w))

W-elim

indWŜ,P̂
(Q, g, sup(s, f)) ≡ app(g, s, f, λindWŜ,P̂

(Q, g, app(f, q)))
W-β

And we have the usual substitution and congruence rules. A propositional
η rule stating that given a u : Π WŜ,P̂ El(app(P, q)) s.t. app(u, sup(s, f)) =

app(g, s, f, u ◦ f), u = λindWŜ,P̂
(Q, g, q) can be proved with the help of function

extensionality (section 2.1.13).
In the case of N :≡ W1̂+̂1̂,λind+̂(λÛ,λ0̂,λ1̂,q), the introduction rule needs an

argument s : El(1̂+̂1̂), and in the zero case, when s ≡ inl ∗, a function f :
El(0̂) → N (which can be given by ind0̂). In the successor case, when s ≡ inr ∗,
a function f : El(1̂)→ N, which is equivalent to giving the argument of type N.
However, defining the eliminator by using W-elim needs function extensionality
(section 2.1.13), see [5].

The usage of elimination rules like indW in definitions of functions can be
replaced by the more user-friendly tool called pattern matching [29]. Instead of
specifying methods as parameters of the eliminator, we specify them in separate
lines for each method by putting the λ-bindings on the left hand side of the :≡
as parameters of the constructor. The left hand sides are called patterns. If we
pattern match on something of type 0, we don’t need to give a right hand side.
For example, addition on natural numbers can be defined as follows:

add(·, ·) : N→ N→ N
add(sup(inl ∗, f), n) :≡ n
add(sup(inr ∗, f), n) :≡ sup(inr ∗, add(app(f, ∗), n))
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This can be translated to a normal function definition by a combination of indW

and ind+̂. The translation from pattern matching to eliminators requires an
additional eliminator for propositional equality called K [60]:

Γ.A.q =Ap q ` C Γ.A ` t : C[reflq] Γ ` a : A Γ ` p : a =A a

Γ ` K(t, a, p) : C[a, p]
= -elim2

This eliminator is a variant of J defined in section 2.1.6: the difference is that the
two parameters of · = · are the same. It does not follow from J [34]. K implies
uniqueness of identity proofs (every two elements of a type u =A v are equal).
Our usages of pattern matching below can always be translated to eliminators
without using K.

A universe closed under W-types means the above rules decorated with “El”s
and “U”s in the appropriate places. The formation rule is:

Γ ` Ŝ : U Γ ` P̂ : El(Ŝ)→ U

Γ ` ŴŜ,P̂ : U
Ŵ-form

If we had the rule Û : U, we would be able to give a W-type El(T̂) representing
trees having arbitrary number of branches at each node by taking Ŝ :≡ Û which
represents the set of branches for the tree (e.g. if the shape is 2̂ : El(Û), there
are two branches of the tree), and given any Î : El(Ŝ) ≡ U, app(P̂ , Î) :≡ Î. The
introduction rule now has the following form:

Î : U f : El(Î)→ El(T̂)

sup(Î , f) : El(T̂)

We can think about elements of El(T̂) as sets. The set sup(Î , f) has as many
elements as the type El(Î) and each such element is again a set given by
the function f . With this definition, Russel’s paradox can be encoded [16]:
a set is defined as normal if it does not contain itself: normal(sup(Î , f)) :≡
Π̂ Î (¬(app(f, q) =̂ sup(Î , f))). We can also define the set N of all normal sets:

N :≡ sup(Σ̂ T̂ normal(q), pr1). It can be shown that N is not normal: this means
that from N being normal we can derive an element of El(0̂). N being normal
means that given a set, a proof that it is normal and another proof that it is
equal to N, we can derive El(0̂). But we can just give N itself as the set, the
proof that it is normal as the proof that it is normal and reflN as the proof that
it is equal to N. On a higher level this proof says that if N is normal, it has to
contain itself, because it is just defined as the set of all normal sets, but then
we arrive to a contradiction:

nonnormN : El(normal(N) →̂ 0̂) ≡ El(Π̂ (Σ̂ T̂ normal(q)) (pr1q = N →̂ 0̂) →̂ 0̂)

nonnormN(normN) :≡ app(normN, (N, normN), reflN)

We can also prove that N is normal: this means that given a set t, a proof n
that it is normal and a proof p that it is equal to N, we need to derive El(0̂). n
says that t is normal, but because of p : t = N, we also know that N is normal,
so we can plug in t as the set, n as the proof that it is normal and p as the proof
that it is equal to N, and get El(0̂). On a higher level this says that if N contains
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itself, then we know that it is normal, since all of its elements are normal:

normN : El(Π̂ (Σ̂ T̂ normal(q)) (pr1q =̂ N →̂ 0̂))

normN((t, n), p) :≡ app(transportnormal(p, n), t, n, p)

Simple inductive types as described above don’t capture data types carrying
additional information about their elements such as lists indexed by their length
or data types carrying some invariant. The notions of container and W-type can
be generalized to that of indexed container [52] and indexed W-type to cover
these cases as well. We follow the presentation of [42].

An indexed container is given by the following data:

Î : U the indexing type

Ŝ : El(Î)→ U given an output index, the type of shapes

P̂ : Π El(Î)

(
El(app(Ŝ, q))→ U

)
given a shape, the type of positions

r : Π El(Î)

(
Π El(app(Ŝ,q)) given a position, its input index(

El(app(P̂ , qp, q))→ El(Î)
))

When defining an indexed container, we define shapes by induction on the out-
put index and positions by induction on output index and shape. The input
index of a recursive argument however is given by a separate function.

As an example we give the constructors for the type of vectors (lists of A in-
dexed by natural numbers providing their length) and the container representing
this type.

nil : VecÂ(0)

cons : Π N
(
El(Â)→ VecÂ(q)→ VecÂ(suc(q))

)
Î :≡ N̂ indices are natural numbers

Ŝ(0) :≡ 1̂ shape for the nil constructor

Ŝ(suc(n)) :≡ Â the cons constructor has one parameter of type N
P̂ (0, s) :≡ 0̂ nil has no recursive arguments

P̂ (suc(n), a) :≡ 1̂ cons has 1 recursive argument
r(0, ∗, ()) the empty pattern is denoted by ()
r(suc(n), a, ∗) :≡ n the recursive argument of cons should have

input index n if the output index is suc(n)

Given an indexed container by Î, Ŝ, P̂ , r, the indexed W-type corresponding
to it is given by:

Γ ` Î : U

Γ ` Ŝ : El(Î)→ U

Γ ` P̂ : Π El(Î)

(
El(app(Ŝ, q))→ U

)
Γ ` r : Π El(Î)

(
Π El(app(Ŝ,q))

(
El(app(P̂ , q))→ El(Î)

))
Γ ` i : El(Î)

Γ `WÎ,Ŝ,P̂ ,r(i)
W-form
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Γ ` i : El(Î)

Γ ` s : El(app(Ŝ, i))

Γ ` f : Π El(app(P̂ , s)) WÎ,Ŝ,P̂ ,r(app(r, q))

sup(i, s, f) : WÎ,Ŝ,P̂ ,r(i)
W-intro

Γ ` Q : Π El(Î) (WÎ,Ŝ,P̂ ,r(q)→ Uj)

Γ ` g : Π El(Î)

(
Π El(app(Ŝ, q))(

Π
(

Π El(app(P̂ , q)) WÎ,Ŝ,P̂ ,r(app(r, q))
)((

Π El(app(P̂ , qp))
El(app(Q, app(r, q), app(qp, q)))

)
→ El(app(Q, qpp, sup(qpp, qp, q)))

)))
Γ ` i : El(Î)
Γ ` w : WÎ,Ŝ,P̂ ,r(i)

indWÎ,Ŝ,P̂ ,r
(Q, g, w) : El(app(Q, i, w))

W-elim

For helping readability, here is the type of the above g in high level notation
omitting “El”s and “app’s:

g : (i : I) (s : S(i))(
f :
(
p : P (s)

)
→W

(
r(p)

))
→
((
p : P (s)

)
→ Q

(
r(p), f(p)

))
→ Q(i, sup(i, s, f))

The computation rule:

indWŜ,P̂
(Q, g, sup(i, s, f)) ≡ app(g, i, s, f, λindWÎ,Ŝ,P̂ ,r

(Q, g, app(f, q)))
W-β

To give a proper type theoretic foundation for a programming language, one
needs to provide tools for writing non-terminating programs such as servers.
These are called coinductively defined coprograms to distinguish them from
inductively defined programs. The coinductive versions of W-types are called
M-types, their usage in type theory is summarized e.g. in [13].

2.1.11 Induction-recursion

As we would like to use type theory as our metatheory, we should be able
to internalize all the above judgment types and rules inside type theory. For
example we would like to internalize a universe V closed under 0, 1, + and Π.
We assume that our metatheory has a universe U closed under 0, 1, 2, Π and
W-types. We define V as an inductive type El(V̂), the type of codes. We specify
it by its formation rule, the list of its constructors and a decoding function Elem
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to the universe U. We write codes in V̂ by lowercase letters.

V̂ : U

zero : El(V̂)

one : El(V̂)

plus(·, ·) : El(V̂)→ El(V̂)→ El(V̂)

pi(·, ·) : Π El(V̂)
((

El(Elem(q))→ El(V̂)
)
→ El(V̂)

)
pi expresses the following rule, which is very similar to the rule formation rule
of Π̂ given in section 2.1.8.

Γ ` a : El(V̂) Γ.El(Elem(a)) ` b : El(V̂)

Γ ` pi(a, b) : El(V̂)

The decoding function is defined by pattern matching as follows:

Elem(zero) :≡ 0̂

Elem(one) :≡ 1̂

Elem(plus(a, b)) :≡ Elem(a)+̂Elem(b)

Elem(pi(a, b)) :≡ Π̂ Elem(a) Elem(app(b, q))

Now for example the type

Elem

(
pi
(

plus(one, one), ind+̂

(
λV̂, λone, λplus(plus(one, one), one), q

)))
corresponds to the functions from the two element type (1̂+̂1̂) to the one-element
type if the input of the function was inl ∗, and the three-element type if the input
of the function was inr ∗.

V cannot be turned directly into a W-type because what would the position
corresponding to the shape be for the pi constructor? It uses the function Elem,
which is in turn defined by induction on V̂. These mutual definitions of a data
type and a function over that data type can be described by the theory of
induction-recursion [23]. However, small inductive recursive definitions (where
the target type of the function is a small type) can be converted into an indexed
container [42]. The idea is to index the data type with the return type of the
function defined simultaneously with it and the return types of the constructors
should reflect what the function was doing: essentially we encode the function in
the indices of the data type. In our case U is not a small type, but we can apply
the same technique to our case defining a data type V′ indexed by U residing in
U1.

V̂′ : U→ U1

zero : El(app(V̂′, 0̂))

one : El(app(V̂′, 1̂))

plus(·, ·) : Π U

(
Π U

(
El(app(V̂′, qp))→ El(app(V̂′, q))→ El(app(V̂′, qp+̂q))

))
pi(·, ·) : Π U

(
Π El(q)→U

(
El(app(V̂′, qp))→

(
Π El(qp) El(app(V̂′, app(qp, q)))

)
→ El(app(V̂′, Π̂ qp app(qp, q)))

))
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The first implicit parameter of plus represents the output of Elem for the first
non-implicit parameter, and this output is the index of the first non-implicit
parameter, similarly the second implicit parameter. The type of pi using high
level notation omitting “El”s:

pi :(Â:U)(B̂:Â→U)→ V̂′(Â)→
(
(x : Â)→ V̂′(B̂(x))

)
→ V̂′

(
(x : Â)→̂B̂(x)

)
Â is the type corresponding to the parameter of type V̂′(Â), hence the second
parameter’s type is a function from Â to V̂′ parameterised with the correspond-
ing output of Elem for the second non-implicit parameter, which depends on the
first.

This definition can be encoded as an indexed W-type if we have W-types that
can be indexed by large types. The relationship between the original inductive-
recursive and this new type is not clear to me, and it seems that the metatheory
needs to have (large) induction-recursion to be able to cope with such definitions.

2.1.12 Computation and metatheory

The way computation is expressed in type theory is normalisation. Normal
forms of terms are the results of a program that we are interested in. For
example, suc(suc(suc(0))) is the normal form of the natural number representing
3, while suc(0) + (suc(suc(0)) + 0) is not in normal form i.e. it needs more
computation to be done to see the result. The following is the general definition
of normal forms for a type theory with function types:

v ::= λv | n
n ::= x | app(n, v)

where x is a variable i.e. q or qp or qpp etc. v represents values in normal form.
So a value is either a lambda abstraction of a value or a neutral term, and a
neutral term is either a variable or a neutral term applied to a value. Neutral
terms are open terms with variables which cannot reduce any further - when
an eliminator like app is applied to a neutral term it produces another neutral
term. The normal forms are typed but we do not express this in our informal
notation.

In the presence of other term formers, an introduction rule gives a new way
of introducing a value, the elimination rule a new way of introducing a neutral
term. E.g. if we have Σ types as well, these are the normal forms:

v ::= λv | n | (v, v)

n ::= x | app(n, v) | indΣ(v, n)

A program is expressed as a term and executing the program normalises the
term, i.e. gives the normal form of the term. In order to give computational
meaning to the type theory, we need to provide an algorithm which given a term
computes its normal form. There are several ways to do this:

• By orienting all the definitional equalities in the formal system defined
above, one gets a small-step rewrite system. We defined these equalities
in sections 2.1.3 and 2.1.5 so that the orientation from left to right gives a
rewrite system which corresponds to the usual definition of rewrite systems
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for lambda calculi. The rewriting system is confluent if for all t terms, if
t reduces to t′ and also to t′′ by applying a different sequence of rewriting
steps, there exists a t′′′ s.t. both t′ and t′′ reduce to it. The rewriting sys-
tem has strong normalisation, if for any term, any sequence of rewriting
steps terminates. If we have confluence and strong normalisation we can
extract a definition of normal forms from the shape of those terms which
do not reduce anymore. This should coincide with the definition of nor-
mal forms as given above; the method of computing normal forms is just
applying (any) rewriting step until there are no more rewriting rules to be
applied. However, strong normalisation for the simply typed λ-calculus
with explicit subsitutions is not true [50], and this applies to our case as
well.

• Big-step normalisation is an approach which evaluates programs to weak-
head normal forms5 by an environment machine and then applies this
method recursively to get an actual normal form. To prove that such a nor-
maliser terminates, the normaliser is augmented with an inductively de-
fined reduction relation expressing the big reduction steps (Bove-Capretta
technique, see [12]). Type theory with explicit substitutions together with
a universe closed under Pi-types is proved normalising in [15].

• Normalisation by evaluation [11] is another technique which works by
model construction (see section 3).

Logical consistency of the theory follows from normalisation: the empty
type does not have any inhabitants because all terms are definitionally equal to
a normal form and there is no introduction rule for the empty type, so there is
no term in normal form with the empty type as its type.

If we have an algorithm to compute the normal form of any term and normal
forms have decidable equality, we get that definitional equality is decidable: to
decide whether two terms are definitionally equal, we just normalise them and
compare the normal forms. If we have the additional property that normalisa-
tion is surjective, i.e. the collection of normal forms doesn’t contain redundant
elements, we can reason inductively about terms by their normal forms.

2.1.13 Extensionality

The type theory as presented above lacks some rules which are commonly used
in informal mathematics. These rules are associated with how propositional
equality works. One rule is function extensionality which states that two point-
wise equal functions are equal:

Γ ` f : ΠAB Γ ` g : ΠAB Γ ` t : ΠA
(
app(f, q) =B app(g, q)

)
Γ ` funext(t) : f =Π A B g

We could assert this rule, but then we would lose normalisation: we give a
new constructor for propositional equality called funext but the elimination rule
J only works for the case when equality was introduced by refl. Then, every

5In weak-head normal form, the outermost constructor is visible, however, parameters of
the outermost constructor need not be in normal form.
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function defined by J will be stuck when receiving funext(...) as its target, so it
will not reduce to a normal form as defined in section 2.1.12.

The situation is similar with another informal practice in mathematics:
identifying isomorphic types. Two types A, B are isomorphic if there is a
function f : El(Â) → El(B̂), a function g : El(B̂) → El(Â) s.t. for all x :
El(Â) . app(g, app(f, x)) =El(Â) x and for all y : El(B̂) . app(f, app(g, y)) =El(B̂) y.
In mathematics, if this is the case, one can replace A and B in any situation by
just transporting elements using the isomorphism. In type theory, this would
correspond to an element isotoid(i) : Â =U B̂ where i represents the isomor-
phism. For example, if A has an operation · ◦ · : El(Â→̂Â→̂Â) we should be
able to use the transport function to get an operation · ◦′ · : El(B̂→̂B̂→̂B̂):

· ◦′ · :≡ transportλq→q→q(isotoid(i), · ◦ ·)

However, as before, transport would not compute, because it is defined by J
which only computes when the target is refl:

transportλq→q→q(isotoid(i), · ◦ ·) ≡ app(J(λq, Â, B̂, isotoid(i)), · ◦ ·) ≡ ?

We can still use these rules inside our theory but we need to do all the
computation involving these terms by hand. We know that these rules do not
make the theory inconsistent by Voevodsky’s simplicial set model [36]. For
details, see section 2.3.

Another way of providing extensionality is having an equality reflection rule
in our theory which says:

p : u =A v

u ≡ v : A
= -reflection

A type theory with such a rule is called extensional type theory. Here extension-
ality refers to that of the identity type, i.e. the identity type is determined by it’s
extensions: the collection of pairs which are equal. This is not directly induced
by the above rule but can be derived: x : A, y : A, p : x =A y ` p =x=y refl
can be proved by J. By having such a rule, type checking (proof checking) be-
comes undecidable as the well-typedness of a term can depend on the equality
of two N → N functions which is undecidable in general. However, function
extensionality can be derived as a theorem in extensional type theory:

Γ ` refl : λx.f(x) = λx.f(x)

Γ ` p : (x : A)→ f(x) = g(x)

Γ, x : A ` app(p, x) : f(x) = g(x)
app and weakening

Γ, x : A ` f(x) ≡ g(x)
= -reflection

Γ ` λx.f(x) ≡ λx.g(x)
λ-cong

Γ ` refl : λx.f(x) = λx.g(x)
= -cong

Γ ` refl : f = g
η for functions

A proof term cannot represent the above derivation fully in extensional type
theory, because there is no way of representing the usage of equality reflection.
The type checker must be able to reproduce the whole above derivation tree
from the proof term containing little information.
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2.1.14 Notes

Martin-Löf’s first publication of type theory [43] was a weak theory with in-
tensional equality and did not use contexts explicitly. Explicit substitutions
first appeared in [1] as a tool to understand implementations which postpone
substitutions to benefit from sharing. They are a helpful tool for presenting
weak type theories as investigated by [17]. Another presentation of the syntax
with explicit substitutions geared towards semantics is given in [33]. Implicit
arguments were introduced by [57]. Universes were introduced in [43].

Containers were introduced in [2], indexed containers in [52], induction-
recursion in [24]. Their relationship is studied in [42].

A good introduction to type theory and its relation to logic is [28]. A modern
presentation of Martin-Löf’s type theory can be found in [58]. It also has a
section about metatheory.

Big-step normalisation is studied in [4].
The relationship between positive and negative presentations of types is

studied by linear logic [27].

2.2 Category Theory

Category theory is a branch of mathematics providing a unified, high level lan-
guage which can be used to talk about type theories. We briefly introduce the
basic concepts of category theory which we will use later: categories, functors,
natural transformations, adjunctions and we give an intuition about higher cat-
egory theory.

As mathematical foundation for our following definitions we use type theory
as introduced in the previous section.

2.2.1 Categories

Definition 2.1 (Set). A type T is a set, if it has unique identity proofs, that is,
for all x, y : T , p, q : x =T y, we have p =x=y q. We use the notation T : Set.
We give a formal definition in 2.27.

Definition 2.2 (Category). A category C is given by the following data:

• a type of objects |C|

• for any two objects A,B, a set6 of morphisms HomC(A,B), f : HomC(A,B)
is also denoted as f : A→ B

• an infix composition function · ◦ · : HomC(B,C) → HomC(A,B) →
HomC(A,C)

• for each object A an identity morphism 1A : A→ A

For which the following laws hold:

• composition is associative

6If HomC was a type without such a restriction, we would need additional coherence laws
apart from the given associativity and composition rules e.g. stating that the two different
ways of using the associativity rule to show that the composition of 4 morphisms are equal,
are equal. We will come back to this in section 2.3.
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• left and right composition with the identity morphism is the same as the
original morphism

A category can be thought of as a generalized monoid where instead of one
carrier we have multiple carriers and all elements of the monoid are “typed”:
they have a domain and codomain; the monoid operation only works in a type-
safe way: two elements can be multiplied if their codomain and domain matches.

Definition 2.3 (1). The one-object category 1 has one object ∗ and one identity
morphism 1∗ : ∗ → ∗.

Definition 2.4 (Set). The category Set is given by the following data:

• objects are sets (as given in definition 2.1)

• morphisms from A to B are functions of type A→ B

• composition is usual function composition

• identities are the identity functions defined by λq

We have intentionally chosen the same name for the category Set and the
type of sets, since the type of sets can be given the structure of a category and
we use the same name for the category.

Definition 2.5 (Section). A section of f : A → B is a morphism g : B → A
s.t. f ◦ g = 1B (a right inverse of f).

Definition 2.6 (Isomorphism). A morphism f : A → B is called an isomor-
phism if there is a morphism g : B → A s.t. g ◦ f = 1A and f ◦ g = 1B.

Definition 2.7 (Groupoid). A groupoid is a category where every morphism is
an isomorphism.

Definition 2.8 (Dual of a category). A dual of a category C is a category Cop
defined by the following data:

• |Cop| :≡ |C|

• for all A,B : |Cop|, HomCop(A,B) :≡ HomC(B,A)

• if f : HomCop(A,B) ≡ HomC(B,A), g : HomCop(B,C) ≡ HomC(C,B),
g ◦Cop f :≡ f ◦C g : HomC(C,A) ≡ HomCop(A,C)

• identities are the same as in C

Definition 2.9 (Product category). Given categories C and D, the category
C × D is defined by the following data:

• |C × D| :≡ |C| × |D| where × is the product defined for types

• HomC×D((C,D), (C ′, D′)) :≡ HomC(C,C ′)×HomD(D,D′)

• (f ′, g′) ◦ (f, g) :≡ (f ′ ◦ f, g′, ◦g)

• 1(C,D) :≡ (1C , 1D)

It is easy to show that the laws hold for the above data.
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2.2.2 Functors

A functor is a structure-preserving mapping between categories, both for objects
and morphisms. Both operations are denoted by juxtaposition.

Definition 2.10 (Functor). A functor F : C → D is given by the following
data:

• for all A : |C| an object FA : |D|

• for all f : HomC(A,B) a morphism Ff : HomD(FA,FB)

obeying the following laws:

• for all f, g composable, F (f ◦ g) = Ff ◦ Fg

• for all A : |C|, F 1A = 1FA

A functor F : Cop → D is called a contravariant functor from C to D. The
difference from a normal (covariant) C → D functor is that if f : A → B, then
Ff : FB → FA, and F (f ◦ g) = Fg ◦ Ff .

A functor F : C → C is called an endofunctor.
A functor F : Cop → Set is called a presheaf.

Definition 2.11 (Hom functor). Given a category C, we can define the Hom-
sets as a functor HomC : Cop × C → Set by the following data:

• HomC applied to an object (A,B) is defined as the Hom-set HomC(A,B)

• if f : A→ B, g : C → D then HomC(f, g) : HomC(B,C)→ HomC(A,D),
HomC(h) :≡ g ◦ h ◦ f

Definition 2.12 (Diagonal functor). For any category C, the functor ∆ : C →
C × C is defined by:

• ∆A :≡ (A,A)

• if f : A→ B, ∆f :≡ (f, f)

Definition 2.13 (Constant functor). The constant functor constD : C → D
maps every object in C to D : |D| and every morphism to 1D.

2.2.3 Natural transformations

A natural transformation is a mapping between functors having the same type.
They map objects in the domain category of the functors into arrows arrows in
the target category.

Definition 2.14 (Natural transformation). If F,G : C → D functors, a natural
transformation α : F →̇G is a collection of arrows αA : FA→ GA for all A : |C|
s.t. for all f : HomC(A,B) the following diagram commutes:

FA
αA - GA

FB

Ff

? αB - GB

Gf

?

That is, Gf ◦ αA = αB ◦ Ff .
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Definition 2.15 (Natural isomorphism). Given F,G : C → D, a natural trans-
formation α : F → G is a natural isomorphism if for all A : |C|, αA : FA→ GA
is an isomorphism.

Definition 2.16 (Functor category). Given categories C, D, the functor cate-
gory DC is defined by:

• objects are functors of type C → D

• morphisms are natural transformations

• composition is the pointwise: if α : F →̇G, β : G →̇H, then (β ◦ α)A :≡
βA ◦ αA

• identity is the identity natural transformation: 1F : F →̇F , (1F )A :≡ 1FA

2.2.4 Adjunctions

Definition 2.17 (Adjunction). Given functors : F : C → D, G : D → C , we
say that F is left adjoint to G (or G is right adjoint to F ), written as F a G if
there is an isomorphism

HomD(FC,D) ∼= HomC(C,GD)

natural in all C : |C|, D : |D|.
This means that for the functors HomD(F ·, D), HomC(·, GD) : C → Set

there should be a natural isomorphism α : HomD(F ·, D) →̇HomC(·, GD). Sim-
ilarly there should be a natural isomorphism β : HomD(FC, ·) →̇HomC(C,G·).

Definition 2.18 (Product and coproduct). A category C has products if ∆ has
a right adjoint called the product functor · × · : C × C → C. Dually, C has
coproducts if ∆ has a left adjoint, the coproduct functor · + · : C × C → C. In
summary: ·+ · a ∆ a · × ·.

This means the following natural isomorphism for the product functor:

HomC(C,A)×HomC(C,B) ≡ HomC×C(∆C, (A,B))

<·,·>−→∼=
←−

<π1◦·,π2◦·>

HomC(C,A×B)

π1, π2 are the projections, < ·, · > is called split.
And the following natural isomorphism for the coproduct functor:

HomC(A+B,C)

<·◦ι1,·◦ι2>−→∼=
←−
[·,·]

HomC×C((A,B),∆C) ≡ HomC(A,C)×HomC(B,C)

ι1, ι2 are the injections, [·, ·] is called join.

Definition 2.19 (Initial and terminal object). A category C has a terminal
object if const∗ : C → 1 has a right adjoint term : 1→ C and the terminal object
is term ∗. Dually, C has an initial object init ∗ if const∗ has a left adjoint.
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These mean the following isomorphisms:

Hom1(∗, ∗) ≡ Hom1(const∗A, ∗) ∼= HomC(A, term ∗)

HomC(init ∗, A) ∼= Hom1(∗, const∗A) ≡ Hom1(∗, ∗)

That is, if C has a terminal object, we have an arrow A→ term ∗ for all A : |C|.
Dually, if there is an initial object, we have an arrow init ∗ → A for all A : |C|.

Definition 2.20 (Exponential). A category C has exponentials (or internal
Hom-sets) if it has products and, for any A : |C|, the partially applied product
functor · ×A : C → C has a right adjoint A⇒ · : C → C. This means:

HomC(C ×A,B)

curry−→∼=
←−

uncurry

HomC(C,A⇒ B)

We define a morphism evalAB : (A⇒ B)×A→ B by evalAB :≡ uncurry(1A⇒B).

If C has exponentials, we can extend the exponential functor to · ⇒ · :
Cop×C → C which acts on objects as described above, and given f : A→ B, g :
C → D, f ⇒ g : (B ⇒ C)→ (A⇒ D), f ⇒ g :≡ curry(g◦evalBC◦(1B⇒C×f)).

Definition 2.21 (Cartesian closed category). A category is called cartesian
closed if it has a terminal object, products and exponentials.

2.2.5 Higher categories

We can define a category of categories Cat. This has categories as objects (we
need smallness, so Cat can’t be an object of itself), and functors as morphisms.
But we have a mapping between functors as well which is not described by the
structure of a category. This leads us to the notion of a higher category, where
we have morphisms between morphisms as well. At the same time, while having
higher morphisms, we can weaken the identity and associativity rule to say that
id ◦ f is not equal, but isomorphic to f .

In normal category theory, we can speak about equality of objects by two
means:

1. stating that two objects are simply equal (using the equality of our metathe-
ory)

2. stating that two objects are isomorphic (using the built-in notion of ob-
jects)

The first notion is called “evil” and definitions using such an evil notions are
disallowed because they don’t respect the second equality, only the first. We
only have one way to talk about equality of morphisms, the meta-theoretic
equality. However, if we have higher morphisms between morphisms, we have
the second type of equality, and the first type will be considered evil.

Definition 2.22 (2-category). A (weak) 2-category is given by the following
data:

• a type of objects which are called 0-cells
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• for any two objects A, B, a category Hom(A,B) the objects of which are
called 1-cells, the morphisms of which are called 2-cells

• for each 0-cell A, a 1-cell 1A : |Hom(A,A)|

• for each triple of 0-cells A, B, C, a functor ·◦· : Hom(B,C)×Hom(A,B)→
Hom(A,C)

• for each pair of 0-cells A, B the following natural isomorphisms7 called
unitors:

1Hom(A,B) ◦ const1A ∼= 1Hom(A,B)

∼= const1B ◦ 1Hom(A,B) : Hom(A,B)→ Hom(A,B)

• for each four 0-cells A, B, C, D, a natural isomorphism called associator:

(h, g, f) 7→ h ◦ (g ◦ f) ∼= (h, g, f) 7→ (h ◦ g) ◦ f
: Hom(C,D)×Hom(B,C)×Hom(A,B)→ Hom(A,D)

such that using the associator clockwise or counter-clockwise in the follow-
ing pentagon to create a natural isomorphism from the left-associating to
the right associating functors result in pointwise equal natural transforma-
tions.

(f, g, h, i) 7→
(f ◦ g) ◦ (h ◦ i)

(f, g, h, i) 7→
((f ◦ g) ◦ h) ◦ i

∼=
-

(f, g, h, i) 7→
f ◦ (g ◦ (h ◦ i))

∼=
-

(f, g, h, i) 7→
(f ◦ (g ◦ h)) ◦ i

∼=
?

∼= - (f, g, h, i) 7→
f ◦ ((g ◦ h) ◦ i)

∼=
6

From the unitors it follows that given an f : Hom(A,B), f ◦ 1A ∼= f , since

f ◦ 1A

=1Hom(A,B)(f) ◦ const1A(f)

=(1Hom(A,B) ◦ const1A)(f)
∼=1Hom(A,B)(f)

=f

Similarly, we get the other identity law and associativity up to isomorphism.
So, in addition to the identity and associativity laws for categories we have

a higher coherence law for associativity itself. The situation becomes much
more complicated when generalizing further, to n-categories, where the laws for

71Hom(A,B) is the identity functor f 7→ f , const1A is the constant functor h 7→ 1A
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k-cells are given up to (k + 1)-cells if k < n. The most generalized notion is
∞-category (or ω-category8) where there is no upper limit of levels.

2.2.6 Applications

Category theory provides a high level language to talk about type theories. We
give some examples of its usage in this area:

• Cartesian closed categories and the simply typed lambda calculus are the
same.

• A categorical model of type theory is given in section 3.

• Types together with their identity types can be viewed as (weak) ∞-
groupoids (see section 2.3).

• The theory of data types (see section 2.1.10) can be given in category
theory: a container is a polynomial functor and a W-type is an initial
objects in the category of algebras of that functor. Dually, a coinductive
type is a terminal object in the category of coalgebras for that functor.
(An algebra for an endofunctor F : C → C is an object A : |C| and a
morphism FA → A. Objects in the category of algebras are algebras
while a morphism from f : FA → A to g : FB → B is a morphism
h : A→ B s.t. h ◦ f = g ◦ Fh.) The approach can be extended to

• Monads are endofunctors with additional properties. They provide a way
to describe computations with side effects [64] and to define the order of
evaluation in functional programming.

2.2.7 Notes

Category theory was founded by Eilenberg and MacLane in 1945 [25]. An
introductory book for computer scientist is [56], a more detailed introduction
is [7] and the most standard textbook is [41].

An introduction to the connection between category theory and logic is [38].
The Homotopy Type Theory book [58] has a chapter on formalizing category

theory in type theory, giving a definition of category which does not allow “evil”
statements.

2.3 Homotopy Type Theory

2.3.1 Homotopies

Traditionally types in type theory are viewed as sets. The propositions as types
view [35] does not change this as it describes a type (proposition) as the set of
its proofs.

However, the equality type does not really behave as expected for sets: the
naturally looking rule saying that every proof of equality is equal to refl (since
this is its constructor) is not provable by the usual elimination rule J of equality
viewed as an inductive type (the K rule, see 2.1.10). This was proved by Hof-
mann and Streicher by constructing the groupoid model where K is false [34].

8We only consider weak versions, so this is to be understood as weak∞-category as opposed
to strict ∞-category.
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A generalisation of this result was given by Awodey [8] and Voevodsky [62]
who interpret types as topological spaces, or, by the homotopy hypothesis, ∞-
groupoids. Viewing a type as a space, an element of the type is a point in
the space, an equality between two elements is a path in the space, an equality
between two equalities of two elements is a homotopy between the two paths.
We make this more precise:

Definition 2.23 (Homotopy (homotopy theory)). If X,Y ⊆ R, a homotopy
between the continuous functions f, g : X → Y is a continuous function h :
[0, 1] × X → Y such that for all x : X . h(0, x) = f(x) and h(1, x) = g(x).
Notation: f ∼ g.

A homotopy can be thought of as the continuous deformation of the image of
f into the image of g. With this definition, we have the following correspondence
between homotopies in homotopy theory and equalities in type theory. The first
three levels of homotopies in homotopy theory are as follows:

f : [0, 1]→ X continuous, f(0) = a, f(1) = b

h : [0, 1]2 → X cont., ∀z : [0, 1] . h(0, z) = f(z), h(1, z) = g(z)

j : [0, 1]3 → X cont., ∀z : [0, 1]2 . j(0, z) = h(z), j(1, z) = i(z)

The corresponding equalities in type theory:

f :
∑
x,x′:X

x =X x′, pr1(pr1(f)) = a, pr2(pr1(f)) = b

h :
∑

p,q:

( ∑
x,x′:X

x=Xx′

) p = q, pr1(pr1(h)) = f, pr2(pr1(h)) = g

j :
∑

r,s:


∑

p,q:

 ∑
x,x′:X

x=Xx
′

p=q



r = s, pr1(pr1(j)) = h, pr2(pr1(j)) = i

Reflexivity of equality is given by the constant path, symmetry by precom-
posing a homotopy by the [0, 1] → [0, 1] function z 7→ 1 − z, transitivity given
an f, g where f(1) = g(0) by

(f � g)(z) :≡

{
f(z ∗ 2) z < 1

2

g
((
z − 1

2

)
∗ 2
)

otherwise

Two functions being pointwise equal now can be thought of as a homotopy
between the two functions (a deformation of one image of the function to the
other image by paths, which are equalities in type theory):

Definition 2.24 (Homotopy (type theory)). A homotopy between two functions
f, g : ΠAB is defined by:

f ∼ g :≡ ΠA
(
app(f, q) =B[x] app(g, q)

)
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More generically:

· ∼̂· : Π U

(
Π (El(q)→U)

(
El(Π̂ qp app(qp, q))→ El(Π̂ qp app(qp, q))→ U

))
· ∼̂· :≡ λ λ λλΠ̂ qppp (app(qpp, q)=̂qppp[q]app(qp, q))

Definition 2.25 (Relative homotopy). If f, g : X → Y, A ⊆ X, a homotopy
relative to A is a h : f ∼ g s.t. for all a : A . h(t, a) is independent of t.

This definition only makes sense if f
∣∣
A

= g
∣∣
A

. A relative homotopy is a
continuous deformation of the images of the functions where the parts which
are elements of A are constant i.e. do not move. A homotopy relative to {0, 1} ⊆
[0, 1] between f, g : [0, 1] → X where f(0) = a = g(0) and f(1) = b = g(1) can
be also written as:

h : [0, 1]→
∑

p:[0,1]→X

p(0) = a× p(1) = b where h(0) = f and h(1) = g

In type theory, we would write

a : X, b : X, f : a = b, g : a = b ` h : f = g

The categorical take on the types as spaces view says that types are ∞-
groupoids. An element of a type is an object (0-cell) of the ∞-groupoid, an
equality between two elements is a morphism (1-cell) between the two objects
(which is an isomorphism, as all morphisms in a groupoid are isomorphisms),
an equality between two equalities is a 2-cell etc.

Just as types can be seen as groupoids, functions are functors between ∞-
groupoids. The object part of the functor is simple function application, while
the morphism part takes a morphisms in X of type x =X x′ for some x, x′ : X
to a morphism of type app(f, x) =Y app(f, y). This is usually called ap (action
on paths):

ap(·, ·) : Π U

(
Π U

(
Π
(

El(qp)→ El(q)
)

(
Π El(qpp)

(
Π El(qp3) (qp = q→ app(qpp, qp) = app(qpp, q))

))))
ap(·, ·) :≡ λ λ λ λ λ λJ(reflapp(qp4,q), qpp, qp, q)

2.3.2 Homotopy levels

Definition 2.1 of sets (types where all equalities between two elements are equal)
corresponds to that of discrete spaces in homotopy theory or 0-groupoids in
category theory. Similarly, types for which equalities of equalities are equal are
called homotopy 1-types in homotopy theory or 1-groupoids (or just groupoids)
in category theory. We can generalize this as follows:

Definition 2.26 (Contractible). A type X is contractible if

isContr(X) :≡
∑
x:X

(∏
x′:X

x = x′

)
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is inhabited. More precisely: the type having code X̂ is contractible if El( ˆisContr(X̂))
is inhabited where ˆisContr is defined as follows:

ˆisContr(·) : U→ U

ˆisContr(·) :≡ λΣ̂ q
(
Π̂ qp (qp=̂qppq)

)
Definition 2.27 (h-level). If n ≥ −2, we define homotopy levels as follows:

ˆis-n-type(·) : U→ U

ˆis-(−2)-type(·) :≡ ˆisContr(·)
ˆis-(n+ 1)-type(·) :≡ λΠ̂ q

(
Π̂ qp ( ˆis-n-type(qp=̂qppq))

)
h-level −1 is also called the level of (mere) propositions — types which do

not carry any information apart from being inhabited or not. For example,
the type is-n-type(X) is a proposition for any n. h-level 0 corresponds to sets
(we denote the type of sets by Set), h-level 1 to groupoids etc. This gives an
internal notion of propositions in the type theory instead of an externally given
proof-irrelevant universe such as Prop in Coq [46].

h-levels are cumulative which means that if a type is of h-level n, it is also
of h-level m for all m > n.

h-levels are not to be confused with universe levels. However, they are not
completely independent: by showing that all type formers preserve h-levels and
base types (0, 1, 2) have h-level 0, we know that all constructible types in U0 are
of h-level 0 (this is a meta-theoretic statement not provable within the theory).
This can be generalized to higher levels, that is, all constructible types in Un
are n-types (metatheoretically). It was shown (within the theory) by Kraus and
Sattler that the universe Un itself is not an n-type [37]. We summarize this in
the following table giving examples of types where they can be constructed and
writing “−” where there are no constructible types.

U0 U1 U2 U3 ...

0 2̂ Û0→̂2̂ Û1→̂2̂ Û2→̂2̂

1 − Û0 Û1→̂Û0 Û2→̂Û0

h-level 2 − − Û1 Û2→̂Û1

3 − − − Û2

... ...

We used cumulativity of universes mentioned in section 2.1.8 in the case of
codes like Û1→̂Û0 (we need Û0 : U2 to use the Π of U2 to construct the code

Û1→̂Û0 : U2).
In the presence of higher inductive types (2.3.4) one can construct types in

any of the cells in the above table.

2.3.3 Equivalence

Equivalence of spaces in homotopy theory is stated as follows.

Definition 2.28 (Homotopy equivalence). Given two spaces X, Y , the contin-
uous function f : X → Y is a homotopy equivalence if there exists a g : Y → X
continuous function such that f ◦ g ∼ idY and g ◦ f ∼ idX .
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Voevodsky’s univalence axiom states that equality of types can be given
by equivalences. Equivalences are the type theoretic counterpart of homotopy
equivalences with an additional coherence condition making isEquiv(f) a propo-
sition for all fs.

Definition 2.29 (Equivalence). Given Â, B̂ : U, an f : El(Â→̂B̂), the type
stating that f is an equivalence is

ˆisEquiv(f) :≡ Σ̂
(g:El(B̂→̂Â))

Σ̂
(η:El(g◦f∼idÂ))

Σ̂
(ε:El(f◦g∼idB̂))

Π̂
(x:El(Â))

ap(f, app(η, x)) =̂app(f,app(g,app(f,x))) =̂B̂ app(f,x) app(ε, app(f, x))

We use the following notation:

Â '̂ B̂ :≡ Σ̂ (Â →̂ B̂) ˆisEquiv(q)

Isomorphism (called quasi-inverse in [58]) of two types can be simply de-
fined by omitting the last coherence condition — and from an isomorphism
one can always derive an equivalence. However, being an isomorphism is not a
proposition (h-level −1).

Definition 2.30 (Univalence). A universe U is univalent if the canonical map-
ping from identity to equivalence is an equivalence:

ua : Π Â:U

(
Π B̂:U El((Â =̂Û B̂) '̂ (Â '̂ B̂))

)
The mapping from p : (Â =̂Û B̂) to (Â '̂ B̂) is defined by the function
transportλU(p, ·), the fact that this is an equivalence can be proven easily by
J.

Univalence justifies both informal mathematical practices mentioned in sec-
tion 2.1.13: function extensionality and isomorphic types being equal [58], how-
ever it lacks a computational interpretation just as those axioms. We will look
at possible ways of finding a solution for this problem in section 3.

2.3.4 Higher inductive types

Inductive types (section 2.1.10) are given by constructors which give elements
of that type (points, if viewed as a space). The natural generalisation is to
specify types where constructors can also give equalities of that type (paths and
higher paths in the space). An example is the type S1 given by the following
constructors:

base : S1

loop : base =S1 base

The notion of eliminator for an inductive type can be generalized to higher
inductive types; however the theory of containers is not yet extended to higher
inductive types, and there is also no general scheme for deriving the eliminator
from the constructors. However, for the above type, the eliminator should be
the following:

Γ.S1 ` P Γ ` b : P [base] Γ ` l : transportP (loop, b) =P [base] b Γ ` x : S1

Γ ` indS1(b, l, x) : P [x]
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That is, we need to give a method b of the family P at base and also a method
l which is an equality of b and b lying over loop in P .

The computation rule is indS1(b, l, base) ≡ b and apd(λindS1(b, l, q), loop) = l.
The second rule is a propositional computation rule using a version of the ap
function defined in section 2.3.1 which works for dependently typed functions.
The propositional computation rules provide new inhabitants of the identity
type without specifying how to eliminate them, so they pose the same problem
as univalence.

Higher inductive types can be used to truncate other types to some h-level.
E.g. propositional truncation creates a mere proposition out of a type from
which no other information can be obtained but inhabitedness.

Definition 2.31 (Propositional truncation). Given a type A, the type ||A|| is
defined as a higher inductive type by the following constructors:

| · | : A→ ||A||
prop-eq : Π (x, y : ||A||) (x = y)

We can only eliminate over this type if we can’t distinguish between elements
of the motive of the elimination:

Γ.||A|| ` P
Γ ` g : ΠA P [|q|]
Γ.||A||.||Ap||.P (pp, qp).P (ppp, qp) ` q : transportP (prop-eq(qp3, qp2), qp) = q
Γ ` x : ||A||

Γ ` ind||A||(g, q, x) : P [x]

Another useful consequence of higher inductive types is that they give quo-
tient types. For example, given the natural numbers N, integers can be defined
by the higher inductive type given by the following constructors:

minus(·, ·) : N→ N→ Z

quot :
∏

a,b,c,d:N
a+ d = c+ b→ minus(a, b) =Z minus(c, d)

set :
∏

(x,y:Z)

∏
(p,q:x=Zy)

p =x=Zy q

The last constructor ensures that we have no higher equalities, i.e. Z is a set.

2.3.5 Notes

The question whether uniqueness of identity proofs is unprovable from J was
raised by [3] in 1992. 4 year later, Hofmann and Streicher constructed a model
that refutes it [34]. They suggested the generalisation of their groupoid model
to higher groupoids and also noted that “such version of identity sets may be
useful for a formulation of category theory inside type theory providing a for-
mal underpinning for the common practice of considering isomorphic objects
as equal.” The connection with topology was discovered independently by Vo-
evodsky [62] and Awodey and Warren [8] in 2006. The univalence axiom was
introduced in [36]. These discoveries culminated in a special year on Univalent
Foundations Institute of Advanced Study in Princeton 2012/2013, where the
book Homotopy Type Theory: Univalent Foundations of Mathematics [58], an
informal introduction for mathematicians was written.
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3 Models of Type Theory

Having an algorithm which computes the normal form from any term is a re-
quirement for the type theory to serve as a programming language. One could
assert univalence and the propositional computation rules for higher inductive
types as axioms, but then any computation involving these would have to be
done manually. Another worry could be that these additional axioms might
make the theory inconsistent - however, this is not the case as showed by a
model construction by Voevodsky [36].

One could consider the following two ways to construct an algorithm for
normalisation:

• Trying to figure out the elimination rules for the additional elements of
equality and showing normalisation by a technique mentioned in section
2.1.12.

• Using model construction. A model in general is a sound semantics, that
is, a specification of the true judgments such that for all rules of the
formal system, if the premises9 are true, then so is the conclusion. In
the next section, we will give a definition of model specific to type theory
which interprets each context, type and term in a semantic domain with
the special property that definitionally equal terms are interpreted as the
same semantic objects. If there is a mapping from the semantic term
objects back to the syntactic terms and the model construction is done
constructively, we are able to derive a normalisation algorithm from it:
we need to compose the interpretation function by the function mapping
semantic values back to syntactic values and define such syntactic values
as normal forms. This method is called normalisation by evaluation [11].

We try to follow the second method. The proposed model should satisfy all
the rules of type theory together with the additional rules of homotopy type the-
ory: univalence and propositional computation rules for higher inductive types.
One way to implement such a model is to use type theory as a metatheory and
use the computational properties of this metatheory to derive the computation
properties of the object theory. To achieve this, syntactic objects (terms) which
are definitionally equal in the object theory should be represented by semantic
objects which are definitionally equal in the metatheory. If this is the case, def-
initionally equal terms would be normalised automatically to the same terms.
In what follows, we present our definition of model, give a list of some models
described in the literature, then turn our attention to the Kan semisimplicial
set model by Thierry Coquand [10].

3.1 Categories with families

The definition of model of type theory that we will use is Peter Dybjer’s cate-
gories with families [22]. To distinguish semantic constructs from the metathe-
ory’s syntax we use informal language or the high level notations as introduced
in section 2.1 when using metatheoretic constructs. For example, instead of
saying that we have a dependent function f : Π A B, we write: for each a : A

9Because the premises usually contain variables we need to take all possible instances of
each rule into account.
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we have an f(a) : B(a). Function application in the metatheory is expressed
by f(a) instead of app(f, a). Dependent sums are expressed as (x : A)× B(x).
= refers to metatheoretic equality (which might be propositional or definitional
in the metatheory). A more principled way would have been to use a logical
framework [31] notation to distinguish the object and the metatheory.

Definition 3.1 (Category of families). The category of families Fam is given
by the following data:

• objects: pairs (A,A′) where A is a set, A′ is a family of sets indexed over
A, i.e. if a : A, then A′(a) is a set

• a morphism from (A,A′) to (B,B′) is a pair of functions (f, f ′) s.t. if
a : A and a′ : A′(a) then f(a) : B and f ′(a′) : B′(f(a))

• composition and identities are defined in the straightforward way

Definition 3.2 (Categories with families (CwF)). A category with families is
given by the following data:

• A category C with a terminal object (contexts and context morphisms).

• A functor F : Cop → Fam. Notation: if Γ : |C| we write FΓ as (Ty(Γ), Tm(Γ, ·)).
If σ : ∆→ Γ then (·σ, ·σ) :≡ Fσ and if A : Ty(Γ) and t : Tm(Γ, A) then
Aσ : Ty(∆), tσ : Tm(∆, Aσ).

• For each Γ : |C| and A : Ty(Γ) a Γ.A : |C| called the comprehension of Γ
and A, and the functions (·, ·), p · and q · which express that the following
is an isomorphism for all ∆,Γ, A:

(
σ : HomC(∆,Γ)

)
×
(
Tm(∆, Aσ)

) (·,·)−→∼=
←−

<p ·,q ·>

HomC(∆,Γ.A)

This definition expresses the rules of type theory given in section 2.1.3 and
2.1.4 (we don’t need semantic counterparts of the congruence rules since defini-
tional equality is modelled by the equality of the metatheory which should have
all the congruence properties by default).

Definition 3.3 (Dependent products as in section 2.1.5). A CwF has dependent
products if for all Γ : |C|, A : Ty(Γ) and B : Ty(Γ.A) there is a Π A B : Ty(Γ)
for which the following equation holds:

(ΠAB)σ = ΠAσ B(σp, q)

And for all Γ, A,B we have the following isomorphism which is natural in Γ:

Tm(Γ.A,B)
λ−→∼=
←−
app′

Tm(Γ,ΠAB)

If the above is not an isomorphism, there are only the two functions λ and app′,
but we have the equalities app′(f)(1, u)σ = app′(fσ)(1, uσ) and app′((λb)σ)(1, u) =
b(σ, u), the CwF has a weak Π.
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The isomorphism being natural means that λ is a natural transformation
from Tm(·, B) ◦ (·.A) to Tm(·,ΠAB) and similarly for app′. The usual app can
be recovered from app′ by app(f, u) :≡ app′(f)(1, u).

Definition 3.4 (Dependent sums as in section 2.1.7). A CwF has dependent
sums if for all Γ : |C|, A : Ty(Γ) and B : Ty(Γ.A) there is a Σ A B : Ty(Γ) for
which the following equation holds:

(ΣAB)σ = ΣAσ B(σp, q)

And for all Γ, A,B the following isomorphism holds and is natural in Γ:

(
a : Tm(Γ, A)

)
× Tm(Γ, B(1, a))

(·,·)−→∼=
←−

<pr1 ·,pr2 ·>

Tm(Γ,ΣAB)

Similar definitions can be given for the equality type, universes and inductive
types. The definitions correspond exactly to those given in the section describing
the rules of type theory 2.1.

3.2 List of models

The groupoid model of type theory [34] interprets types as groupoids and the
identity type as the discrete groupoid of all arrows between two objects. So, an
interpretation of a type by a groupoid having two different arrows between two
objects refutes uniqueness of identity proofs. However, equalities of equalities
have no structure in this model, they are either the empty groupoid or the one-
element groupoid. The 2-groupoid model [45] has equalities between equalities,
but the third level of equalities is trivial. These models were extended to the
strict ∞-case by Warren [65] and to the weak ∞-groupoid case by Voevodsky
[36]. We give a list of models of type theory containing these and some related
ones.
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object theory model metatheory
MLTT with a universe
closed under Π

a model which does
not fit into CwF
because definitional
equality is inter-
preted by a sep-
arate type former
[15]

MLTT

MLTT with function ex-
tensionality and UIP

observational type
theory (OTT) [5]

MLTT with a proof-
irrelevant Prop universe

MLTT (without some
definitional rules for pro-
jections) with function
extensionality and quo-
tient types

setoid model by
Hofmann [32]

MLTT

weak MLTT with a uni-
valent universe of propo-
sitions

setoid model by Co-
quand [18]

MLTT

MLTT with a univalent
universe of propositions
and sets

groupoid model [34] MLTT

MLTT with a univalent
universe of propositions,
sets and large sets

2-groupoid
model [45]

MLTT (Coq)

MLTT strict ω-groupoid
model [65]

ZFC

MLTT with univalence
for all universes

Voevodsky’s Kan
simplicial set
model [36] (∞-
groupoid model)

ZFC (uses non-
constructive properties,
see [19])

MLTT Semisimplicial set
model [10]

constructive parts of
ZFC

weak MLTT with a uni-
valent universe of sets

truncated Kan
semisimplicial set
model [10]

MLTT

weak MLTT with univa-
lence for all universes

Kan semisimplicial
set model [10]

constructive set theory

We are interested in studying and implementing Thierry Coquand’s Kan
semisimplicial set model. First we describe the (simpler) semisimplicial set
model.

3.3 Semisimplicial set model

3.3.1 Semisimplicial sets

Definition 3.5 (Semisimplicial set). Let ∆+ be the category with objects [n] =
{0, 1, . . . , n} non-empty finite linear orders and morphisms injective strictly in-
creasing maps. A semisimplicial set is a presheaf ∆op

+ → Set.

Every non-identity injective function is a composition of injective functions
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leaving out the ith element: εi : [n]→ [n+ 1].
By unfolding the definition of semisimplicial set we get the following struc-

ture:

• For the object part of the functor we take sets X[0], X[1] etc. as the
images of objects [0], [1] etc.

• For the morphism part of the functor it is enough to give the images of
the εi functions (and identities) and generate the images of compositions
of injections by the composition of images. Hence, we take functions
di : X[n] → X[n − 1] (i = 0, ..., n) as the image of each non-identity
injection and the identity function as the image of the identity injection.

We can define the same structure in type theory by saying that X[0] is a
type, X[1] is a type family indexed over two elements of X[0] where the images
of εi functions are expressed in the types, X[2] is the type family indexed over
elements of X[1] which are in turn indexed over “elements of X[0]” etc. The
first three levels are listed below:

X[0] : Set

X[1] : X[0]→ X[0]→ Set

X[2] : (x0 x1 x2:X[0]) → X[1] x0 x1 → X[1] x0 x2 → X[1] x1 x2 → Set

X[3] : (x0 x1 x2 x3:X[0])

(x01:X[1] x0 x1)(x02:X[1] x0 x2)(x03:X[1] x0 x3)

(x12:X[1] x1 x2)(x13:X[1] x1 x3)(x23:X[1] x2 x3)

→ X[2] x01 x02 x12 → X[2] x01 x03 x13

→ X[2] x02 x03 x23 → X[2] x12 x13 x23 → Set

The full series hasn’t been formalised yet in type theory. The geometric in-
terpretation of the series is as follows: X[0] is the set of points (0-dimensional
simplices), X[1] is the set of directed edges (1-dimensional simplices) parame-
terised by two points, for example an edge of type X[1] x0 x1 has starting point
x0 and end point x1. An element of type X[2] x01 x02 x12 is a triangle (2-
dimensional simplex) with sides x01, x02 and x12. The next level simplices are
tetrahedrons. The indices are always increasing. The direction of the edges of
the triangle is fixed by the indices so that they are increasing. The di functions
are called face maps as they give the faces of a simplex. The faces of an edge are
two points, the faces of a triangle are three edges, the faces of a tetrahedron are
triangles. In general, an n-dimensional simplex has n + 1 (n − 1)-dimensional
simplices as it’s faces given by the n + 1 face maps di : X[n] → X[n − 1] for
i = 0, . . . , n.

A semisimplicial set X can be thought of as a set of points X[0], a set of lines
X[1] for any two points, a set of triangles, tetrahedrons, 4-dimensional simplices,
5-dimensional simplices etc. X[n] is the set of n-dimensional simplices.

3.3.2 Semantic universe

In the semisimplicial set model, contexts will be defined as semisimplicial sets.
We define a special context which is the (semantic) universe of types. Then, a
type over Γ can be interpreted by a context morphism from Γ to the universe.
The semantic universe is defined by the following semisimplicial set:
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Definition 3.6 (Semantic universe). We define a functor W : ∆op
+ → Set by

the following data. Hom∆+
([m], [n]) is written as [m]→ [n].

• object part:

W[n] :≡
(
P : ([m]:|∆+|) → ([m]→ [n])→ Set

)
×
(
· 〈·〉 : ([m]:|∆+|)(f :[m]→[n])

→ P (f)→([p]:|∆+|)→ (g : [p]→ [m])→ P (f ◦ g)
)

×
(

([m]:|∆+|)(f :[m]→[n])
(u : P (f))→ u〈1〉 = u

)
×
(

([m],[p],[o]:|∆+|)(f :[m]→[n])

(g : [p]→ [m])(h : [o]→ [p])(u : P (f))

→ u〈g ◦ h〉 = (u〈g〉)〈h〉
)

• for the morphism part, given an f ′ : [n] → [n′], we define a function
Wf ′ : W[n′]→W[n] by Wf ′(P ) ≡ P (f ′ ◦ · ). More precisely:

Wf ′(P, ·〈·〉, idlaw, complaw) :≡(
λm f . P (m, f

′ ◦ f),

λ [m] [f ] u [p] g . · 〈·〉([m], f ′◦f , u, [p], g),

λ [m] f u . idlaw([m], f ′◦f , u),

λ [m] [p] [o] f g h u . complaw([m], [p], [o], f ′◦f , g, h, u)
)

The functor laws hold. W[n] is a set of families indexed by morphisms with
target [n] (hence their domain is some [m] where m < n) equipped with an
operation ·〈·〉 obeying functor-like laws.

We describe a notation for W. We write P : W[n] for (P, ·〈·〉, idlaw, complaw) :
W[n]. Morphisms in the category ∆+ (strictly increasing injections) are isomor-
phic to finite sets of natural numbers: a set represents the function of which it
is the image of. For example the [2]→ [4] function

0
0 7→ 1

2
1 7→ 3
2 7→ 4

can be represented by the set {1, 3, 4} which we write as 134. If I ⊂ N finite,
we define W(I) to be W[|I| − 1]. If J ⊆ I and P : W(I) we write P (J) for
P (f ◦ · ) : W(J) where f : [|J | − 1] → [|I| − 1] is the injection represented by
J . We write P (J) also for P (f) ≡ P (J)(1) : Set. If u : P (I) : W(I)10, then we
write u(J) for u〈f〉 : P (J) : W(J).

If I ⊂ N finite, a : I, u : P : W (I), we write ∂au : ∂aP : W (I − a) for
u(I − a) : P (I − a) : W (I − a).

10This is a short notation for u : P (I) where P (I) ≡ P (I)(1) and for P (I) : W(I) at the
same time.
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W(0) = Set is the set of types, an element of W(0) is a type. An element
P : W(01) is a heterogeneous binary relation or an edge:

P ≡ P (01) : W(01) set of pairs

P (0) : W(0) domain type

P (1) : W(1) ≡W(0) target type

u : P (01) 7→ u(0) : P (0) first projection

u : P (01) 7→ u(1) : P (1) second projection

An element P : W[2] is a triangle:

P ≡ P (012) : W(012) set of triangles

P (0), P (1), P (2) : W(0) sets of vertices

P (01), P (02), P (12) : W(01) sets of edges

u(0) : P (0), u(1) : P (1), u(2) : P (2) vertices of the triangle u : P (012)

u(01) : P (01), u(02) : P (02), u(12) : P (12) edges of the triangle u : P (012)

We can express the definition of W also in type theory just as we did for semisim-
plicial sets:

W[0] : Set

W[0] = Set

W[1] : W[0]→W[0]→ Set = Set→ Set→ Set

W[1] = λP (0) P (1) . P (0)→ P (1)→ Set

W[2] : (P (0) P (1) P (2) :W[0]) →W[1] P (0) P (1)→W[1] P (0) P (2)

→W[1] P (1) P (2)→ Set

=(P (0) P (1) P (2) :Set)→ (P (0)→ P (1)→ Set)→ (P (0)→ P (2)→ Set)

→ (P (1)→ P (2)→ Set)→ Set

W[2] = λ P (0) P (1) P (2) P (01) P (02) P (12) . (p0:P (0))(p1:P (1))(p2:P (2)) → P (01) p0 p1

→ P (02) p0 p2 → P (12) p1 p2 → Set

An element P : W[n] is the set of heterogeneous n-dimensional simplices. So, if
P : W[2] and X is a semisimplicial set, P is like X[2] which is a set of triangles,
but unlikeX[2], the triangles in P are heterogeneous, that is, there are 3 different
types for vertices (P (0), P (1), P (2)) and also three different types for the edges
(P (01), P (02), P (12), these are all parameterised over the appropriate types
of vertices). For a triangle in X[2], all vertices have type X[0] and all edges
have type X[1]. In general, if P : W[n], P consists of n+ 1 sets,

(
n+1

2

)
types of

edges,
(
n+1

3

)
types of triangles, . . . ,

(
n+1
i

)
types of i-simplices, . . . , n+ 1 types

of (n− 1)-simplices, and it is itself a type of n-simplices.
An element u : P : W(I) is a heterogeneous n-dimensional simplex. It’s

(n − 1)-dimensional faces are ∂au : ∂aP for a : I. Note that u : P (I − a) and
v : P (I−b) are compatible (they have a common face) if ∂bu = ∂av : P (I−ab). If
u : P (I) and a, b : I distinct then ∂au : P (I−a) is compatible with ∂bu : P (I−b)
since ∂b∂au = ∂a∂bu : P (I − ab).

3.3.3 CwF definition

Definition 3.7 (Semisimplicial set model). We give the following CwF:
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• C is defined as the functor category Set∆op
+ . If Γ : ∆op

+ → Set functor, f :
[m]→ [n], ρ : Γ[n], we write ρf : Γ[m] for the operation on morphisms. A
substitution σ : ∆→ Γ is a natural transformation i.e. σ[n] : ∆[n]→ Γ[n]
s.t. for all ρ : ∆[n] we have that (σ[n](ρ))f = σ[m](ρf).

• Given a Γ : |∆op
+ → Set|, types over Γ are defined as natural transforma-

tions (substitutions) from Γ to W:

Ty(Γ) :≡
(
A : ([n]:|∆+|) → Γ[n]→W[n]

)
×
(

([n]:|∆+|)
(ρ : Γ[n])(f : [m]→ [n])→ A([n], ρ)(f ◦ · ) = A([m], ρf)

)
The naturality property could have been expressed byA(ρ)(f) = A(ρf)(1).
From such a rule the pointwise equality of the families A([n], ρ)(f ◦ · ) and
A([m], ρf) in W[n] can be derived.

If A : Ty(Γ) and σ : ∆ → Γ then Aσ :≡ λ [n] ρ . A([n], σ[n](ρ)) (type
substitution is composition of natural transformations).

• Given a Γ : |∆op
+ → Set| and an A : Ty(Γ), terms of type A are defined

as follows:

Tm(Γ, A) :≡
(
t : ([n]:|∆+|)(ρ : Γ[n])→ A([n], ρ)(1)

)
×
(

([m][n]:|∆+|)
(f : Hom∆+([m], [n]))(ρ : Γ[n])

→ t(ρ)

:A(ρ)(1)

〈f〉

:A(ρ)(f)

= t( ρf

:Γ[m]

)

:A(ρf)(1)

)

Note that the equation t(ρ)〈f〉 = t(ρf) is well typed because of the natu-
rality of Ty.

If t : Tm(Γ, A) and σ : ∆→ Γ then

tσ : ([n]:|∆+|)(ρ : ∆[n])→ A([n], σ[n](ρ))(1)

tσ :≡ λ [n] ρ . t([n], σ[n](ρ))

• Given A : Ty(Γ), the comprehension Γ.A is the ∆op
+ → Set functor defined

by:

– (Γ.A)[n] :≡ (ρ : Γ[n])×A([n], ρ)(1)

– if f : [m]→ [n] then (ρ, u)f :≡ (ρf, u〈f〉)

A context is a semisimplicial set, that is, a set of points (elements of the
context), for each two point, a set of edges (expressing some relation between
the two points), a set of triangles (expressing relations between relations) etc.

Before looking at what a type over Γ is, we need to fix a level n. An open
type at level n is a mapping from n-simplices in Γ[n] to a set of heterogeneous
n-simplices. A closed type is an element of W[n], that is, a set of heterogeneous
n-simplices.

At level n, an open term is a mapping from n-simplices to a heterogeneous n-
simplex of the corresponding type. A closed term is a heterogeneous n-simplex
of the corresponding closed type.
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3.3.4 Function types

Given A : Ty(Γ), B : Ty(Γ.A), Π A B : Ty(Γ) is defined as follows. Π A B is
a natural transformation from Γ to W i.e. Π A B : ([n]:|∆+|) → Γ[n] → W[n]
together with a naturality property. We fix an [n] and a ρ : Γ[n] and provide an
element of W[n]. Afterwards, we will show the naturality property.

We define some abbreviations:

A′ :≡ A([n], ρ) : W[n]

B′ :≡ λ ([m]:|∆+|) (f : [m]→ [n])(a : A′(f)).

:W[m]

B([m], (ρf, a))

Definition 3.8 (Function types in the semisimplicial set model). (ΠAB)([n], ρ) :
W[n] is defined as the following quadruple:(
P :≡ λ [n′] (f ′ : [n′]→ [n]) .(

ϕ : ([m]:|∆+|) (f : [m]→ [n′])(a : A′(f ′ ◦ f))→ B′(f ′ ◦ f, a)(1)
)

×
(

([m]:|∆+|)(f :[m]→[n′])
(a : A′(f ′ ◦ f)) ([p]:|∆+|) (g : [p]→ [m])

→ ϕ(f ◦ g, a〈g〉) = ϕ(f, a)〈g〉
)

, ·〈·〉 :≡λ [n′](f ′:[n′]→[n]) ((ϕ, τ) : P (f ′)) [n′′] (f ′′ : [n′′]→ [n′]) .(
λ [m] (f : [m]→ [n′′])(a : A′(f ′ ◦ f ′′ ◦ f)) . ϕ([m], f

′′ ◦ f, a)

, λ [m](f :[m]→[n′′]) (a : A′(f ′ ◦ f ′′ ◦ f)) [p] (g : [p]→ [m]) . τ([m], f ′′◦f , a, g)
)

, λ [n′](f ′:[n′]→[n]) ((ϕ, τ) : P (f ′)) .

a proof of (ϕ, τ)〈1〉 = (ϕ, τ)

which equals (ϕ(1 ◦ ·, ·) = ϕ(·, ·))× (τ(·, 1◦ ·, ·, ·) = τ(·, ·, ·, ·))
which equals (ϕ(·, ·) = ϕ(·, ·))× (τ(·, ·, ·, ·) = τ(·, ·, ·, ·))

, λ [n′][n′′][n′′′](f ′:[n′]→[n])(f
′′ : [n′′]→ [n′])(f ′′′ : [n′′′]→ [n′′])((ϕ, τ) : P (f ′)) .

a proof of (ϕ, τ)〈f ′′ ◦ f ′′′〉 = ((ϕ, τ)〈f ′′〉)〈f ′′′〉
which equals (ϕ(f ′′ ◦ f ′′′ ◦ ·, ·) = ϕ(f ′′ ◦ ·, ·)〈f ′′′〉)

× (τ(·, f ′′◦f ′′′◦ ·, ·, ·) = τ(·, f ′′◦·, ·, ·)〈f ′′′〉)
which equals (ϕ(f ′′ ◦ f ′′′ ◦ ·, ·) = ϕ(f ′′ ◦ f ′′′ ◦ ·, ·))

× (τ(·, f ′′◦f ′′′◦ ·, ·, ·) = τ(·, f ′′◦f ′′′◦·, ·, ·))
)

In short, a function ϕ : (Π A B)([n], ρ)(1) is defined as a mapping from an
a : A′(f) to an element of B′(f, a)(1) for all f : [m] → [n], which commutes
with applying ·〈g〉.

Naturality means that for all g : [p]→ [n] and ρ : Γ[n] we have (ΠAB)([n], ρ)(g◦
· ) = (ΠAB)([p], ρg). A and B are natural, i.e. A([n], ρ)(g ◦ · ) = A([p], ρg) and
similarly for B, so by the congruence rules of equality we know Π A B is also
natural.

3.4 Kan semisimplicial sets

A Kan semisimplicial set is a semisimplicial set (a functor ∆op
+ → Set) equipped

with additional operations called completion and filling. Having a completion
operator means that e.g. at level 2, given two compatible edges we get a third
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edge which completes the two edges so that they can form a triangle (only the
third edge is produced by the completion operator). Similarly, given 3 triangles,
the completion on level 3 produces a fourth triangle so that the 4 triangles
together have the shape of a tetrahedron. Filling lets one build simplices on
higher levels. Filling on level 2 means that given two compatible edges, together
with the third edge produced by the completion operation, these form a triangle:
filling produces the triangle, an object on level 3.

Definition 3.9 (Set of compatible families). Given a J ⊂ N finite, a : J , the set
of compatible families P (Λa(J)) is defined as the set of families ub : P (J−b) for
b : J − a such that they are compatible on all faces i.e. ∂cub = ∂buc : P (J − bc)
for each distinct b, c : J − a.

A compatible family u : P (Λa(J)) ≡ (b : J − a) → P (J − b) is a |J | − 1-
dimensional horn almost forming a |J | − 1 dimensional simplex. Only one face
of the simplex is left out, the one numbered by a. For example, if J = 012 and
a = 1, the family u0, u2 are two edges which connect at vertex number 1.

There is a canonical map P (J)→ P (Λa(J)) which maps a u : P (J) into the
family ∂bu : P (J − b) for b : J − a.

Definition 3.10 (V). A P : W (I) is in V (I) if for all J ⊆ I, each canonical
map P (J)→ P (Λa(J)) has a section.

This means that if we have a horn, we can fill it and get a simplex which is
one dimension higher and this simplex has the same faces as the original horn.

Definition 3.11 (Kan semisimplicial set). Given a semisimplicial set X, for all
I ⊂ N finite the restriction X(I) ≡ X[|I| − 1] can be regarded as an element of
W(I). X is called a Kan semisimplicial set if each restriction X(I) is in V(I).

So a semisimplicial set X is Kan if for any level n, any n-dimensional horn
can be filled to form an n-dimensional simplex.

3.5 Implementation details

The formalisation of categories with families and the term model for simple type
theory is a work in progress in Agda. It uses function extensionality, higher
inductive types and induction-induction [6] in an essential way, however all the
types are sets. The metatheory required is essentially a version of observation
type theory [5] extended with higher inductive types and propositional proof
irrelevance. However, it is possible to do such a formalisation in Agda even
without having definitional computation rules for function extensionality and
without having pattern matching for higher inductive types, it is just more
cumbersome.

3.5.1 Simple type theory in 0-level homotopy type theory

I implemented the term model of simple type theory in type theory.
The Agda implementation first defines the simplified CwF model (section

3.1) as an interface that one could implement: a record type having as fields the
category of contexts and the contravariant functor from the contexts to types
and terms together with the definition of function space. (It is simplified for
simple type theory: the Ty part of the functor is just a constant functor.)
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record STT : Set1 where

field

-- category of contexts

Con : Set

_⇒_ : Con → Con → Set

one : {Γ : Con} → Γ ⇒ Γ

_◦_ : {Δ Γ Θ : Con} → Γ ⇒ Θ → Δ ⇒ Γ → Δ ⇒ Θ

lid : {Δ Γ : Con} (σ : Δ ⇒ Γ) → one ◦ σ = σ

rid : {Δ Γ : Con} (σ : Δ ⇒ Γ) → σ ◦ one = σ

◦-ass : {Δ Γ Θ Ω : Con} (σ : Θ ⇒ Ω) (δ : Γ ⇒ Θ) (ν : Δ ⇒ Γ)

→ (σ ◦ δ) ◦ ν = σ ◦ (δ ◦ ν)
-- Con has a terminal object

� : Con

! : (Γ : Con) → Γ ⇒ � --?

!uniq : {Γ : Con} → (δ : Γ ⇒ �) → δ = ! Γ

-- set of types

Ty : Set

-- a contravariant functor Tm_A : Con → Set for all (A : Ty)

Tm : Ty → Con → Set

_[_] : {A : Ty} {Δ Γ : Con} → Tm A Γ → Δ ⇒ Γ → Tm A Δ

[]id : {A : Ty} {Γ : Con} (t : Tm A Γ) → t [ one ] = t

[]cong : {A : Ty} {Δ Γ Θ : Con} (t : Tm A Θ) (σ : Γ ⇒ Θ)

(δ : Δ ⇒ Γ) → t [ σ ◦ δ ] = (t [ σ ]) [ δ ]

-- comprehension

_•_ : (Γ : Con) (A : Ty) → Con

p : {Γ : Con} {A : Ty} → Γ • A ⇒ Γ

q : {Γ : Con} {A : Ty} → Tm A (Γ • A)

〈_,_〉 : {Δ Γ : Con} {A : Ty} (σ : Δ ⇒ Γ) (u : Tm A Δ)

→ Δ ⇒ Γ • A

pβ : {Δ Γ : Con} {A : Ty} (σ : Δ ⇒ Γ) (u : Tm A Δ)

→ p ◦ 〈 σ , u 〉 = σ

qβ : {Δ Γ : Con} {A : Ty} (σ : Δ ⇒ Γ) (u : Tm A Δ)

→ q [ 〈 σ , u 〉 ] = u

pqη : {Δ Γ : Con} {A : Ty} (δ : Δ ⇒ Γ • A)

→ 〈 p ◦ δ , q [ δ ] 〉 = δ

-- function space: Tm B (Γ • A) ' Tm (A ⇒ B) Γ

_⇒_ : Ty → Ty → Ty

lam : {Γ : Con} {A B : Ty} → Tm B (Γ • A) → Tm (A ⇒ B) Γ

app : {Γ : Con} {A B : Ty} → Tm (A ⇒ B) Γ → Tm B (Γ • A)

⇒β : {Γ : Con} {A B : Ty} (t : Tm B (Γ • A))

→ app (lam t) = t

⇒η : {Γ : Con} {A B : Ty} (f : Tm (A ⇒ B) Γ)

→ lam (app f) = f

lamnat : {Δ Γ : Con} {A B : Ty} (δ : Δ ⇒ Γ) (u : Tm B (Γ • A))

→ lam (u [ 〈 δ ◦ p , q 〉 ]) = (lam u) [ δ ]
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In the future we might also need to include in the definition that Con, Ty
and Term are indeed sets (types of h-level 0).

The term model is given by mutually defined inductive types with higher
constructors which we just postulate. The eliminator and computation rules
are also given by postulates. There is a trick by Dan Licata [39] to provide
definitional computation rules for 0-constructors, we use this in the implemen-
tation, however we hide the usage of this trick here because it makes the code
harder to read. I list the type formation rules and construtors below:

data Ty : Set where

o : Ty

_⇒_ : (A B : Ty) → Ty

data Con : Set where

� : Con

_•_ : (Γ : Con) (A : Ty) → Con

data _⇒_ : Con → Con → Set where

one : {Γ : Con} → Γ ⇒ Γ

_◦_ : {Γ Δ Θ : Con} → Δ ⇒ Θ → Γ ⇒ Δ → Γ ⇒ Θ

p : {Γ : Con} {A : Ty} → Γ • A ⇒ Γ

〈_,_〉 : {Δ Γ : Con} {A : Ty} → Δ ⇒ Γ → Tm A Δ → Δ ⇒ Γ • A

data Tm : Ty → Con → Set where

q : {Γ : Con} {A : Ty} → Tm A (Γ • A)

_[_] : {Δ Γ : Con} {A : Ty} → Tm A Γ → Δ ⇒ Γ → Tm A Δ

lam : {Γ : Con} {A B : Ty} → Tm B (Γ • A) → Tm (A ⇒ B) Γ

app : {Γ : Con} {A B : Ty} → Tm (A ⇒ B) Γ → Tm B (Γ • A)

postulate

-- higher constructors for _⇒_

lid : {Δ Γ : Con} (σ : Δ ⇒ Γ) → one ◦ σ = σ

rid : {Δ Γ : Con} (σ : Δ ⇒ Γ) → σ ◦ one = σ

◦-ass : {Δ Γ Θ Ω : Con} (σ : Θ ⇒ Ω) (δ : Γ ⇒ Θ) (ν : Δ ⇒ Γ)

→ (σ ◦ δ) ◦ ν = σ ◦ (δ ◦ ν)
pβ : {Δ Γ : Con} {A : Ty} (σ : Δ ⇒ Γ) (u : Tm A Δ)

→ p ◦ 〈 σ , u 〉 = σ

pqη : {Δ Γ : Con} {A : Ty} (δ : Δ ⇒ Γ • A)

→ 〈 p ◦ δ , q [ δ ] 〉 = δ

⇒set : {Δ Γ : Con} {σ δ : Δ ⇒ Γ} (p q : σ = δ) → p = q

-- higher constructors for Tm

[]id : {A : Ty} {Γ : Con} (t : Tm A Γ) → t [ one ] = t

[]cong : {A : Ty} {Δ Γ Θ : Con} (t : Tm A Θ) (σ : Γ ⇒ Θ)

(δ : Δ ⇒ Γ) → t [ σ ◦ δ ] = (t [ σ ]) [ δ ]

qβ : {Δ Γ : Con} {A : Ty} (σ : Δ ⇒ Γ) (u : Tm A Δ)

→ q [ 〈 σ , u 〉 ] = u

⇒β : {Γ : Con} {A B : Ty} (t : Tm B (Γ • A))

→ app (lam t) = t

⇒η : {Γ : Con} {A B : Ty} (f : Tm (A ⇒ B) Γ)
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→ lam (app f) = f

lamnat : {Δ Γ : Con} {A B : Ty} (δ : Δ ⇒ Γ) (u : Tm B (Γ • A))

→ lam (u [ 〈 δ ◦ p , q 〉 ]) = (lam u) [ δ ]

Tmset : {Γ : Con} {A : Ty} {u v : Tm A Γ} (p q : u = v)

→ u = v

The elimination rules provide definitional computation rules for the normal
constructors and we postulate propositional computation rules for the higher
constructors. For example, the type of the eliminator for terms looks as follows:

Tm-elim :

(P : (A : Ty) (Γ : Con) → Tm A Γ → Set)

(cq : {Γ : Con} {A : Ty} → P A (Γ • A) q)

(c[] : {Δ Γ : Con} {A : Ty} {u : Tm A Γ} (s : P A Γ u)

(δ : Δ ⇒’ Γ) → P A Δ (u [ δ ]))

(clam : {Γ : Con} {A B : Ty} {u : Tm B (Γ • A)}

(s : P B (Γ • A) u) → P (A ⇒ B) Γ (lam u))

(capp : {Γ : Con} {A B : Ty} {f : Tm (A ⇒ B) Γ}

(s : P (A ⇒ B) Γ f) → P B (Γ • A) (app f))

(c[]id : {A : Ty} {Γ : Con} {t : Tm A Γ} (s : P A Γ t)

→ P A Γ : c[] s one ≡[ []id t ] s)

(c[]cong : {A : Ty} {Δ Γ Θ : Con} {t : Tm A Θ} {σ : Γ ⇒’ Θ}

{δ : Δ ⇒’ Γ} (s : P A Θ t)

→ P A Δ : c[] s (σ ◦ δ) ≡[ []cong t σ δ ] c[] (c[] s σ) δ)

(cqβ : {Δ Γ : Con} {A : Ty} (σ : Δ ⇒’ Γ) {u : Tm A Δ}

(s : P A Δ u) → P A Δ : c[] cq 〈 σ , u 〉 ≡[ qβ σ u ] s)

(c⇒β : {Γ : Con} {A B : Ty} {t : Tm B (Γ • A)}

(s : P B (Γ • A) t)

→ P B (Γ • A) : capp (clam s) ≡[ ⇒β t ] s)

(c⇒η : {Γ : Con} {A B : Ty} {f : Tm (A ⇒ B) Γ}

(s : P (A ⇒ B) Γ f)

→ P (A ⇒ B) Γ : clam (capp s) ≡[ ⇒η f ] s)

(clamnat : {Δ Γ : Con} {A B : Ty} (δ : Δ ⇒’ Γ) {u : Tm B (Γ • A)}

(s : P B (Γ • A) u)

→ P (A ⇒ B) Δ : clam (c[] s 〈 δ ◦ p , q 〉)
≡[ lamnat δ u ] c[] (clam s) δ )

(cset : {A : Ty} {Γ : Con} {u v : Tm A Γ} (p q : u ≡ v)

(a : P A Γ u) (b : P A Γ v) (r : P A Γ : a ≡[ p ] b)

(s : P A Γ : a ≡[ q ] b)

→ (λ z → P A Γ : a ≡[ z ] b) : r ≡[ Tmset p q ] s)

{A : Ty} {Γ : Con} (x : Tm A Γ) → P A Γ x

4 Future plans

Metaprogramming for a programming language is an important tool for abstrac-
tion. To do dependently typed metaprogamming it is an essential requirement
to internalise the syntax of type theory in type theory (which means defining
the term model within type theory). Efforts to achieve this have resulted in
incomplete and notationally very heavy constructions [20] [15]. Another more
semantic approach is using observational type theory [47].
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Defining a model of type theory amounts to defining a function from the
syntax (term model) to a semantic domain for which the internalisation of the
syntax is also required. Hence, this is a step required for solving the canonicity
problem of homotopy type theory by model construction.

A major difficulty in internalising the syntax is the treatment of definitional
equalities. They can be given by separate constructors for each type which
amounts to defining setoids as opposed to sets but then one ends up with many
coherence laws inducing further coherence laws etc. An idea which comes from
homotopy type theory is the usage of higher inductive types for the same pur-
pose. In this case, one gets all the coherence laws by the transport and ap
functions defined for propositional equality.

On a related note, the fact that propositional equality of definitionally equal
terms in the empty context is provable by refl can be used to model the ob-
ject theory definitional equalities by the definitional equality of the metatheory
which is unreachable from within the theory.

For my PhD research, I would like to explore and extend the usability of
this technique for defining type theory inside type theory. Also, I would like to
understand what features a type theory should have to allow such constructions
and to implement such a type theory with normalisation as a shallow embedding
in Agda (this would be a 0-truncated version of homotopy type theory, or an
extension of observation type theory with higher inductive types, induction-
induction, induction-recursion using a propositionally proof-irrelevant universe
of propositions).

4.1 Thesis plan

An imaginary plan for the structure of my thesis is as follows.
Title: Formalising type theory in type theory.
Abstract: Derivation rules of a type theory are given by mutual definitions

using induction-induction, sometimes induction-recursion. For example the con-
text judgements Γ ` are interpreted by an inductive type Con : U and the types
over Γ are interpreted by an inductive type indexed over Con, Ty : Con → U.
One of the constructors of Con depends on a Ty: ·.· : (Γ : Con)→ Ty(Γ)→ Con.
This is an example of induction-induction. When defining a universe, one needs
to use induction-recursion as described in section 2.1.11. The judgements for
definitional equality can be given explicitly as separate inductive datatypes for
contexts, types and terms as shown in section 2.1.2. In this case one has to
augment all type and term formers with congruence rules in the corresponding
inductive type for equality. Another solution is to use an idea from homotopy
type theory: types with higher constructors expressing these equalities. In this
case, because propositional equality has the property that equal terms can be
replaced with each other (transport), we get all congruence and substitution
rules for free. However, we would need normalisation for such a type theory
to be able to use it to implement models giving a computational explanation
to homotopy type theory. And the computational interpretation of higher in-
ductive types is just what we would like to find. Luckily, all the rules define
sets, types in homotopy type theory having h-level 0. And for these types the
normalisation problem can be solved as shown by observational type theory [5].
My aim is to implement a version of observational type theory with set-level
higher inductive types where the universe of propositions is not definitionally,
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but propositionally proof irrelevant. The theory should support function ex-
tensionality and induction-induction, induction-recursion in a principled way
without using pattern matching. My imaginary thesis consists of the following
chapters:

1. Introduction

2. Technical background. This chapter would have very similar content to
section 2 in this document with some additional material mentioned at
each subsection.

1.1. Type theory. In addition to the material presented here I would
talk about impredicativity and provide more details about induction-
recursion, induction-induction and parametricity.

1.2. Category theory. In addition to the material presented here I would
present the Yoneda lemma and more details about presheaf cate-
gories.

1.3. Homotopy type theory. A more detailed introduction than the cur-
rent one.

3. Models of type theory

2.1. Categories with families. I would present rules for more type formers
and detailed rules on how to define universes and rules for homotopy
type theory. This would be augmented with a formal specification of
such a model.

2.2. Some models. Examining the term model would show what features
a type theory should exactly have in order to be capable for defining
all rules. Short definition of other models.

4. 0-truncated homotopy type theory. This chapter would present the type
theory described above together with an implementation in Agda.

5. Applications. This chapter would provide some applications on how to
use the above theory to explain the meaning of the informal usages of
constructive metatheories as in [10].

3.1. Term model

3.2. NBE for simple type theory

3.3. NBE for type theory

3.4. Groupoid model

3.5. 2-groupoid model

3.6. Semisimplicial set model

3.7. Kan semisimplicial set model

5 Other topics

Some other topics that I studied in my first year included the following.
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5.1 Free applicative functors

Applicative functors [49] are a generalisation of monads in functional program-
ming. Both allow defining effectful computations in a pure setting, however
applicative functors can only express computations with a fixed structure. Free
monads are used as a tool for producing embedded languages from any lan-
guage defined by a functor [61]. Paolo Capriotti extended the idea of defining
embedded languages from free monads to free applicative functors. These lan-
gauges have less expressive power however they allow the static analysis of these.
Together with Paolo Capriotti, we wrote a paper about this construction [14]
and we plan to extend the paper with a formalisation in terms of (applicative)
containers.

5.2 Parametricity

Some models of type theory validate so-called free theorems. These express
a generalisation of the idea that polymorphic functions are natural tranfor-
mations. This result was first proved for System F [59] and popularised for
programming languages based on this type system [63]. They are a useful tool
for reasoning about programs. Free theorems can be only proven metatheoret-
ically, not within the theory. A similar property stated in section 2.3.2 is that
all types in U0 are of h-level 0.

5.3 Total Haskell embedded in Agda

Haskell is a programming language with a type system based on the impred-
icative System F [28]. It has a pure type system however non-total programs
can be written in it directly. Haskell programmers typically try to avoid writing
partial programs and like to reason about them as if Haskell was a total lan-
guage [21]. A way to conveniently reason formally about Haskell total programs
is to embed them into a total predicative dependent type theory, like that of
Agda [53]. However this presents difficulties when try to use free theorems [59]
when reasoning about programs because the obvious postulating of free theo-
rems true in the impredicative System F setting might make the predicative
theory incosistent. We encountered this problem when trying to formalise free
applicative functors. I am interested in finding ways to avoid this problem.
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Explicit substitutions. In Conference Record of the Seventeenth Annual
ACM Symposium on Principles of Programming Languages, San Francisco,
California. ACM, 1996.

[2] Michael Abott, Thorsten Altenkirch, and Neil Ghani. Containers - con-
structing strictly positive types. Theoretical Computer Science, 342:3–27,
September 2005. Applied Semantics: Selected Topics.

[3] Thorsten Altenkirch. An open question concerning inductive equality. e-
mail message to the edinburgh lego club, 1992.

54



[4] Thorsten Altenkirch and James Chapman. Big-step normalisation. Journal
of Functional Programming, 19(3-4):311–333, 2009.

[5] Thorsten Altenkirch, Conor Mcbride, and Wouter Swierstra. Observational
equality, now! In PLPV ’07: Proceedings of the 2007 workshop on Pro-
gramming languages meets program verification, pages 57–58. ACM, 2007.

[6] Thorsten Altenkirch, Peter Morris, Fredrik Nordvall Forsberg, and Anton
Setzer. A categorical semantics for inductive-inductive definitions. In An-
drea Corradini and Bartek Klin, editors, CALCO, Lecture Notes in Com-
puter Science, 2011.

[7] S. Awodey. Category Theory. Oxford Logic Guides. OUP Oxford, 2010.

[8] Steve Awodey and Michael A. Warren. Homotopy theoretic models of
identity types. September 2007.

[9] Henk Barendregt and Silvia Ghilezan. Lambda terms for natural deduction,
sequent calculus and cut elimination. J. Funct. Program., 10(1):121–134,
2000.

[10] Bruno Barras, Thierry Coquand, and Simon Huber. A generalization of
Takeuti-Gandy interpretation. http://uf-ias-2012.wikispaces.com/

file/view/semi.pdf, 2013.

[11] Ulrich Berger and Helmut Schwichtenberg. An inverse of the evaluation
functional for typed λ–calculus. In R. Vemuri, editor, Proceedings of the
Sixth Annual IEEE Symposium on Logic in Computer Science, pages 203–
211. IEEE Computer Society Press, Los Alamitos, 1991.

[12] Ana Bove and Venanzio Capretta. Nested general recursion and partiality
in type theory. In Theorem Proving in Higher Order Logics: 14th In-
ternational Conference, TPHOLs 2001, volume 2152 of Lecture Notes in
Computer Science, pages 121–135. Springer-Verlag, 2000.

[13] Venanzio Capretta. Coalgebras in functional programming and type the-
ory. Theoretical Computer Science, 412(38):5006–5024, 2011. CMCS Tenth
Anniversary Meeting.

[14] Paolo Capriotti and Ambrus Kaposi. Free applicative functors. In Proceed-
ings 5th Workshop on Mathematically Structured Functional Programming,
MSFP 2014, Grenoble, France, 12 April 2014., pages 2–30, 2014.

[15] James Chapman. Type theory should eat itself. Electron. Notes Theor.
Comput. Sci., 228:21–36, January 2009.

[16] Thierry Coquand. The paradox of trees in type theory. BIT, 32, 1991.

[17] Thierry Coquand. Weak type theory. http://www.cse.chalmers.se/

~coquand/wmltt.pdf, 2012.

[18] Thierry Coquand. About the setoid model. http://www.cse.chalmers.

se/~coquand/setoid.pdf, 2013.

55

http://uf-ias-2012.wikispaces.com/file/view/semi.pdf
http://uf-ias-2012.wikispaces.com/file/view/semi.pdf
http://www.cse.chalmers.se/~coquand/wmltt.pdf
http://www.cse.chalmers.se/~coquand/wmltt.pdf
http://www.cse.chalmers.se/~coquand/setoid.pdf
http://www.cse.chalmers.se/~coquand/setoid.pdf


[19] Thierry Coquand and Simon Huber. Simplicial sets model of type theory.
http://www.cse.chalmers.se/~coquand/decuniv.pdf, 2013.

[20] Nils Anders Danielsson. A formalisation of a dependently typed language as
an inductive-recursive family. In Thorsten Altenkirch and Conor McBride,
editors, TYPES, volume 4502 of Lecture Notes in Computer Science, pages
93–109. Springer, 2006.

[21] Nils Anders Danielsson, John Hughes, Patrik Jansson, and Jeremy Gib-
bons. Fast and loose reasoning is morally correct. In J. Gregory Morrisett
and Simon L. Peyton Jones, editors, POPL, pages 206–217. ACM, 2006.

[22] Peter Dybjer. Internal type theory. In Lecture Notes in Computer Science,
pages 120–134. Springer, 1996.

[23] Peter Dybjer. A general formulation of simultaneous inductive-recursive
definitions in type theory. Journal of Symbolic Logic, 65:525–549, 2000.

[24] Peter Dybjer and Anton Setzer. A finite axiomatization of inductive-
recursive definitions. In Typed Lambda Calculi and Applications, volume
1581 of Lecture Notes in Computer Science, pages 129–146. Springer, 1999.

[25] Samuel Eilenberg and Saunders MacLane. General theory of natural equiv-
alences. Trans. Amer. Math. Soc., 58:231–294, 1945.

[26] J. Y. Girard. Une extension de l’interpretation de Godel a l’analyse, et
son application a l’elimination des coupures dans l’analyse et la theorie des
types. 63:63–92, 1971.

[27] Jean-Yves Girard. Linear logic. Theoretical Computer Science, pages 1–
102, 1987.

[28] Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and types. Cam-
bridge University Press, New York, NY, USA, 1989.

[29] Healfdene Goguen, Conor Mcbride, and James Mckinna. Eliminating de-
pendent pattern matching. In of Lecture Notes in Computer Science, pages
521–540. Springer, 2006.

[30] Robert Harper. Practical Foundations for Programming Languages. De-
cember 2009.

[31] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defin-
ing logics. J. ACM, 40(1):143–184, January 1993.

[32] M. Hofmann. Extensional Concepts in Intensional Type Theory. Thesis.
University of Edinburgh, Department of Computer Science, 1995.

[33] Martin Hofmann. Syntax and semantics of dependent types. In Semantics
and Logics of Computation, pages 79–130. Cambridge University Press,
1997.

[34] Martin Hofmann and Thomas Streicher. The groupoid interpretation of
type theory. In In Venice Festschrift, pages 83–111. Oxford University
Press, 1996.

56

http://www.cse.chalmers.se/~coquand/decuniv.pdf


[35] William A. Howard. The formulas-as-types notion of construction. In J. P.
Seldin and J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory
Logic, Lambda Calculus, and Formalism, pages 479–490. Academic Press,
1980.

[36] Chris Kapulkin, Peter LeFanu Lumsdaine, and Vladimir Voevodsky. The
simplicial model of univalent foundations, 2012. arXiv:1211.2851.

[37] Nicolai Kraus and Christian Sattler. On the hierarchy of univalent
universes: un is not n-truncated. http://red.cs.nott.ac.uk/~ngk/

universes.pdf, 2013.

[38] J. Lambek and P. J. Scott. Introduction to higher order categorical logic.
Cambridge University Press, New York, NY, USA, 1986.

[39] Dan Licata. Running circles around (in) your proof assistant; or, quo-
tients that compute, 2011. http://homotopytypetheory.org/2011/04/

23/running-circles-around-in-your-proof-assistant/.

[40] Sam Lindley and Conor Mcbride. Hasochism the pleasure and pain of
dependently typed haskell programming, 2013. Haskell Symposium 2013.

[41] Saunders Mac Lane. Categories for the Working Mathematician. Graduate
Texts in Mathematics. Springer, 2nd edition, September 1998.

[42] Lorenzo Malatesta, Thorsten Altenkirch, Neil Ghani, Peter Hancock, and
Conor McBride. Small induction recursion, indexed containers and depen-
dent polynomials are equivalent, 2013. TLCA 2013.
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Montréal, Canada, June 18–20, 2009. Providence, RI: American Mathe-
matical Society (AMS). CRM Proceedings and Lecture Notes 53, 291-340
(2011)., 2011.

58

http://www.mathematik.tu-darmstadt.de/~streicher/HabilStreicher.pdf
http://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/Hlambda_short_current.pdf
http://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/Hlambda_short_current.pdf

	Introduction
	Structure

	Technical background
	Martin-Löf Type Theory
	Intuition
	Kinds of judgments
	Rules for context formation and substitution
	Congruence rules for definitional equality
	Rules for the function type
	Rules for propositional equality
	Rules for Sigma
	Rules for universes
	Rules for finite types
	Rules for inductive types
	Induction-recursion
	Computation and metatheory
	Extensionality
	Notes

	Category Theory
	Categories
	Functors
	Natural transformations
	Adjunctions
	Higher categories
	Applications
	Notes

	Homotopy Type Theory
	Homotopies
	Homotopy levels
	Equivalence
	Higher inductive types
	Notes


	Models of Type Theory
	Categories with families
	List of models
	Semisimplicial set model
	Semisimplicial sets
	Semantic universe
	CwF definition
	Function types

	Kan semisimplicial sets
	Implementation details
	Simple type theory in 0-level homotopy type theory


	Future plans
	Thesis plan

	Other topics
	Free applicative functors
	Parametricity
	Total Haskell embedded in Agda

	References

